Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
681.3*I33 --- 681.3*I33 Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Photography --- digital photography [digital camera] --- digitale fotografie
Choose an application
Heden ten dage kent men een sterk groeiende vraag naar hoogwaardige 3D-modellen. Hoewel veelal traditionele opnametechnieken onder druk komen van meer flexibele en schaalbare alternatieven, blijven er toch heel wat uitdagingen bestaan. Deze vormen dan ook het uitgangspunt voor het onderzoek binnen dit werk. Deze thesis draagt bij tot dit domein door middel van technieken voor 3D-acquisitie aan hoge snelheden, die toelaten tot de gedetailleerde opname van dynamische en vervormbare objecten. De technieken die worden geïntroduceerd zijn zelf-adaptief met betrekking tot de scène. Bovendien, hoe sneller de opnametechniek, des te relevanter de informatie die vervat is in de laatste 3D-data over wat men kan verwachten in de volgende opname. Dit maakt het werken aan hoge snelheden tot een belangrijk aspect om een dergelijke online adaptie mogelijk te maken. Naast deze interne systeemadaptaties, wordt via een onmiddellijke weergave aan de gebruiker de nodige feedback gegeven die toelaat het opnameproces te beoordelen. In het geval van een statische scène zijn meer uitgebreide patroonadaptaties mogelijk. Onder deze omstandigheden worden nu ook oppervlaktereflectantie-eigenschappen samen met een schatting van de ruwe geometrie en de resolutie van de opname- en projectie-apparatuur expliciet in rekening gebracht. Ook hybride combinaties worden voorgesteld, waarmee we het beste van twee werelden pogente combineren: snelheid voor een dynamische scène en robuustheid indien er geen beweging is. Hierdoor kan men tot betere modellen komen, die op een meer automatische manier worden gecreëerd. An increased demand for high quality 3D models can be witnessed nowadays. Traditional acquisition techniques got competition from more flexible and scalable alternatives. Nevertheless, several challenges remain, which form the basis for theresearch in this work. This thesis contributes to this domain by proposing techniques for high speed 3D acquisition which allow for the detailed capture of dynamic and deformable objects. The proposed techniques for 3D scanning areself-adaptive w.r.t. the current scene. The faster the system, the more relevant the information contained within the latest 3D data, about what is to be expected in the next snapshot. This renders high speed operation an important ally in making online adaptations possible. Next to these internal system adaptations, immediate visualization of the partial results to the user provides the necessary feedback to evaluate the ongoing acquisition process. In case of a static scene more extended online pattern adaptations are possible. The object's surface reflectance, approximated geometry and the device resolutions are explicitly taken into account. Furthermore, also hybrid combinations of both techniques are proposed, which try to combine the best of both worlds: speed in case of a dynamic scene and robustness for a static scene. Better models result, which can be created in a more automated way. Heden ten dage kent men een sterk groeiende vraag naar hoogwaardige 3D-modellen. Hoewel veelal traditionele opnametechnieken onder druk komen van meer flexibele en schaalbare alternatieven, blijven er toch heel wat uitdagingen bestaan. Deze vormen dan ook het uitgangspunt voor het onderzoek binnen dit werk. Deze thesis draagt bij tot dit domein door middel van technieken voor 3D-acquisitie aan hoge snelheden, die toelaten tot de gedetailleerde opname van dynamische en vervormbare objecten. De technieken die worden geïntroduceerd zijn zelf-adaptief met betrekking tot de scène. Bovendien, hoe sneller de opnametechniek, des te relevanter de informatie die vervat is in de laatste 3D-data over wat men kan verwachten in de volgende opname. Dit maakt het werken aan hoge snelheden tot een belangrijk aspect om een dergelijke online adaptie mogelijk te maken. Naast deze interne systeemadaptaties, wordt via een onmiddellijke weergave aan de gebruiker de nodige feedback gegeven die toelaat het opnameproces te beoordelen. In het geval van een statische scène zijn meer uitgebreide patroonadaptaties mogelijk. Onder deze omstandigheden worden nu ook oppervlaktereflectantie-eigenschappen samen met een schatting van de ruwe geometrie en de resolutie van de opname- en projectie-apparatuur expliciet in rekening gebracht. Ook hybride combinaties worden voorgesteld, waarmee we het beste van twee werelden pogente combineren: snelheid voor een dynamische scène en robuustheid indien er geen beweging is. Hierdoor kan men tot betere modellen komen, die op een meer automatische manier worden gecreëerd. An increased demand for high quality 3D models can be witnessed nowadays. Traditional acquisition techniques got competition from more flexible and scalable alternatives. Nevertheless, several challenges remain, which form the basis for theresearch in this work. This thesis contributes to this domain by proposing techniques for high speed 3D acquisition which allow for the detailed capture of dynamic and deformable objects. The proposed techniques for 3D scanning are self-adaptive w.r.t. the current scene. The faster the system, the more relevant the information contained within the latest 3D data, about what is to be expected in the next snapshot. This renders high speed operation an important ally in making online adaptations possible. Next to these internal system adaptations, immediate visualization of the partial results to the user provides the necessary feedback to evaluate the ongoing acquisition process. In case of a static scene more extended online pattern adaptations are possible. The object's surface reflectance, approximated geometry and the device resolutions are explicitly taken into account. Furthermore, also hybrid combinations of both techniques are proposed, which try to combine the best of both worlds: speed in case of a dynamic scene and robustness for a static scene. Better models result, which can be created in a more automated way.
Choose an application
681.3*I33 --- 681.3*I33 Picture/image generation: digitizing and scanning display algorithms viewing algorithms (Computer graphics) --- Picture/image generation: digitizing and scanning display algorithms viewing algorithms (Computer graphics) --- Computer drawing --- Computer graphics --- Dessin par ordinateur --- Infographie --- 681.3*I33 Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Automatic drafting --- Graphic data processing --- Graphics, Computer --- Computer art --- Graphic arts --- Electronic data processing --- Engineering graphics --- Image processing --- Drawing --- Digital techniques
Choose an application
681.3*I41 --- 681.3*I33 --- 681.3*I33 Picture/image generation: digitizing and scanning display algorithms viewing algorithms (Computer graphics) --- Picture/image generation: digitizing and scanning display algorithms viewing algorithms (Computer graphics) --- 681.3*I41 Digitization quantization sampling scanning (Image processing) --- Digitization quantization sampling scanning (Image processing) --- 681.3*I33 Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- 681.3*I41 Digitization; quantization; sampling; scanning (Image processing) --- Digitization; quantization; sampling; scanning (Image processing)
Choose an application
Artificial intelligence. Robotics. Simulation. Graphics --- Computer graphics --- Infographie --- 681.3*I33 --- Automatic drafting --- Graphic data processing --- Graphics, Computer --- Computer art --- Graphic arts --- Electronic data processing --- Engineering graphics --- Image processing --- Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Digital techniques --- Computer graphics. --- 681.3*I33 Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics)
Choose an application
Inhoudsopgave : 1.Kennismaken met digitale camera's 2.Betere foto's maken 3.Foto's omzetten in digitale afbeeldingen 4.Afbeeldingen beheren en opslaan 5.Afbeeldingen in de goede vorm gieten 6.Magische trucs voor digitale beelden 7.Filters voor speciale effecten 8.Digitale afbeeldingen elektronisch weergeven 9.Andere nuttige en leuke dingen doen met uw afbeeldingen 10.Buitengewone dingen doen met afbeeldingen 11.Afbeeldingen elektronisch delen 12.Internet gebruiken voor het delen van afbeeldingen 13.Digitale afbeeldingen omzetten in afdrukken
Beeldbewerking. --- Digitale fotografie. --- Fotografie --- Automatisering --- Informatica --- Beeldcommunicatie --- 681.3*I41 --- 681.3*I33 --- Désherbage --- 681.3*I33 Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- Picture/image generation: digitizing and scanning; display algorithms; viewing algorithms (Computer graphics) --- 681.3*I41 Digitization; quantization; sampling; scanning (Image processing) --- Digitization; quantization; sampling; scanning (Image processing) --- Deselectie --- 640 --- fototechniek --- digitale fotografie --- vrijetijdsbesteding --- temps libre
Choose an application
New information and knowledge are important aspects of innovation in modern farming systems. There is currently an abundance of digital and data-driven solutions that can potentially transform our food systems. At a time when the general public has concerns about how food is produced and the impact of farm production systems on the environment, strategies to increase public acceptance and the sustainability of food production are required more than ever. New tools and technology can provide timely insights into aspects such as nutrient profiles, the tracking of animal or plant wellbeing, and land-use options to enhance inputs and outputs associated with the farm business. Such solutions have the ultimate aim of enhancing production efficiency and contributing to the process of learning about the advantages of the innovation, while ensuring more sustainable food supplies. At the farm level, any new information needs to be in a useful format and beneficial for management and farm decision-making. The papers in this Special Issue evaluate agri-business innovation that can enhance farm-level decision-making.
dairy cows --- computer vision --- behaviors --- monitoring --- management --- behavior --- birth --- observations --- sheep --- proximal --- sensing --- LiDAR --- photogrammetry --- grasslands --- pastures --- Adversarial-VAE --- tomato leaf disease identification --- image generation --- convolutional neural network --- potato management --- tuber formation stage --- precipitation patterns
Choose an application
New information and knowledge are important aspects of innovation in modern farming systems. There is currently an abundance of digital and data-driven solutions that can potentially transform our food systems. At a time when the general public has concerns about how food is produced and the impact of farm production systems on the environment, strategies to increase public acceptance and the sustainability of food production are required more than ever. New tools and technology can provide timely insights into aspects such as nutrient profiles, the tracking of animal or plant wellbeing, and land-use options to enhance inputs and outputs associated with the farm business. Such solutions have the ultimate aim of enhancing production efficiency and contributing to the process of learning about the advantages of the innovation, while ensuring more sustainable food supplies. At the farm level, any new information needs to be in a useful format and beneficial for management and farm decision-making. The papers in this Special Issue evaluate agri-business innovation that can enhance farm-level decision-making.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- dairy cows --- computer vision --- behaviors --- monitoring --- management --- behavior --- birth --- observations --- sheep --- proximal --- sensing --- LiDAR --- photogrammetry --- grasslands --- pastures --- Adversarial-VAE --- tomato leaf disease identification --- image generation --- convolutional neural network --- potato management --- tuber formation stage --- precipitation patterns --- dairy cows --- computer vision --- behaviors --- monitoring --- management --- behavior --- birth --- observations --- sheep --- proximal --- sensing --- LiDAR --- photogrammetry --- grasslands --- pastures --- Adversarial-VAE --- tomato leaf disease identification --- image generation --- convolutional neural network --- potato management --- tuber formation stage --- precipitation patterns
Listing 1 - 10 of 21 | << page >> |
Sort by
|