Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The maritime industry is an ever evolving one. It has felt the presence in the change in trends and demands of globalization. Along with it new routes emerge which let us venture into unknown paths. Although the sailing time in ice is limited, merchant ships often need significant extra powering to meet the ice class requirements. It is important to study the resistance of ships in brash ice as it helps us to determine the required engine power of the ship and helps us to reduce the fuel consumption leading to reduced greenhouse gas emissions. In Arctic regions, waterways often become covered and congested with relatively small-sized ice rubble, known as brash ice. Brash ice is composed of accumulated ice fragments, primarily the debris produced when the ice cover over a channel is broken by a ship passing through the channel. With each transit, more brash ice is produced from the ice cover regrown from the channel. Though properties and growth has been studied before, there is a need for further study on the frictional effects in brash ice conditions. To understand brash ice conditions better, HSVA focuses on the study of the effect of friction on the total ice resistance. The portion of different resistance components in brash ice are studied along with the effects. For the same, model test results are evaluated with different friction coefficients. In this current thesis, literature study of the limited resources on ice resistance in brash ice conditions are presented. This would help us to understand the past research on similar topic. Along with that model scale test results along with its associated results are also exhibited. The ship were initially grouped on the basis of the dimensional parameters. Then parameters of the same have been varied and the effects on the relative resistance that pertains to a certain group is noted. Mathematical models are also followed using the same test values to evaluate the same and hope to emerge into a converging result. The mathematical models have been processed by using empirical relations as well as totally analytical derivations. One of the mathematical model stated as Dobrodeev model has down the total resistance into various sub groups i.e. frictional resistance, momentum resistance etc. Every sub group has been evaluated based on different criteria's and then summed up to derive the total resistance. Riska model as followed has empirical formulas and derived constants from earlier studies of other vessels. The Mellor model is totally analytical method which is primarily based on the hull shape. This all is done to improve our understanding the effect of friction on the total resistance in brash ice conditions
brash ice --- ice resistance --- friction --- Ingénierie, informatique & technologie > Ingénierie mécanique
Choose an application
This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes.
Technology: general issues --- History of engineering & technology --- vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane’s method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid–structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic–structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion --- n/a --- Kane's method --- acoustic-structure coupling
Choose an application
This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes.
vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane’s method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid–structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic–structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion --- n/a --- Kane's method --- acoustic-structure coupling
Choose an application
This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes.
Technology: general issues --- History of engineering & technology --- vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane's method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid-structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic-structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion --- vortex-induced vibration --- higher mode --- flexible pipe --- oscillatory flow --- motion trajectory --- lock-in --- dominant frequency --- time-varying --- lifeboat --- freefall --- ship motion --- Kane's method --- one-way coupling --- CFD-DEM --- ice resistance --- ice crack --- fluid-structure interaction --- flexible beam --- high speed imaging --- system coupling --- coastal structure --- fluid-structure interaction --- engineering design parameters --- environment protection --- intake velocity --- velocity cap --- axial hydraulic force --- stress --- deformation --- pump turbine --- starting-up --- cutting ratio --- codend --- hydrodynamic characteristics --- fluttering motions --- the Fourier series --- marine centrifugal pump --- vibration excitation source --- fluid excitation --- electromagnetic excitation --- numerical simulation --- OpenFOAM --- one-way approach --- structural analysis --- open water test --- computational fluid dynamics --- numerical analysis --- fluid mechanics --- blade design --- propeller --- hydraulic machinery runner --- wet modal analysis --- acoustic-structure coupling --- boundary condition --- marine growth --- hydrodynamic loading --- roughness --- mussels --- morison coefficients --- cavity detachment --- free streamlines --- Brillouin criterion
Listing 1 - 4 of 4 |
Sort by
|