Narrow your search

Library

KU Leuven (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULiège (7)

VIVES (7)

LUCA School of Arts (5)

ULB (5)

FARO (4)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (3)

2020 (2)

2019 (2)

2013 (1)

2011 (1)

Listing 1 - 9 of 9
Sort by

Book
Fuzzy Hypergraphs and Related Extensions
Authors: ---
ISBN: 9811524033 9811524025 Year: 2020 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the fundamental and technical concepts of fuzzy hypergraphs and explains their extensions and applications. It discusses applied generalized mathematical models of hypergraphs, including complex, intuitionistic, bipolar, m-polar fuzzy, Pythagorean, complex Pythagorean, and q-rung orthopair hypergraphs, as well as single-valued neutrosophic, complex neutrosophic and bipolar neutrosophic hypergraphs. In addition, the book also sheds light on real-world applications of these hypergraphs, making it a valuable resource for students and researchers in the field of mathematics, as well as computer and social scientists.


Book
Hypergraph Theory : An Introduction
Author:
ISBN: 3319033700 3319000799 3319000802 9783319000794 9783319000800 Year: 2013 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This authored monograph presents hypergraph theory and covers both traditional elements of the theory as well as more original concepts such as entropy of hypergraph, similarities and kernels. Moreover, the author gives a detailed account to applications of the theory, including, but not limited to, applications for telecommunications and modeling of parallel data structures. The target audience primarily comprises researchers and practitioners in applied sciences but the book may also be beneficial for graduate students.


Book
In Memoriam, Solomon Marcus
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him.


Book
In Memoriam, Solomon Marcus
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him.


Book
In Memoriam, Solomon Marcus
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him.

Keywords

Information technology industries --- Computer science --- automata theory --- formal language theory --- bio-informatics --- recursive function theory --- evolutionary processor --- network of evolutionary processors --- network topology --- theory of computation --- computational models --- intrinsic perception --- Hausdorff dimension --- fractal --- computational complexity --- Turing machine --- oracle Turing machine --- shortest computations --- quasiperiod --- formal language --- asymptotic growth --- polynomial --- membrane computing --- computational complexity theory --- P vs. NP problem --- evolutional communication --- symport/antiport --- Kolmogorov complexity --- random strings --- extractors --- finite languages --- deterministic finite cover automata --- multiple entry automata --- automata with “do not care” symbols --- similarity relations --- process calculus --- communication patterns --- control structures --- hypergraph model --- P systems --- cP systems --- NP-complete --- NP-hard --- SAT --- logarithmic time complexity --- automata theory --- formal language theory --- bio-informatics --- recursive function theory --- evolutionary processor --- network of evolutionary processors --- network topology --- theory of computation --- computational models --- intrinsic perception --- Hausdorff dimension --- fractal --- computational complexity --- Turing machine --- oracle Turing machine --- shortest computations --- quasiperiod --- formal language --- asymptotic growth --- polynomial --- membrane computing --- computational complexity theory --- P vs. NP problem --- evolutional communication --- symport/antiport --- Kolmogorov complexity --- random strings --- extractors --- finite languages --- deterministic finite cover automata --- multiple entry automata --- automata with “do not care” symbols --- similarity relations --- process calculus --- communication patterns --- control structures --- hypergraph model --- P systems --- cP systems --- NP-complete --- NP-hard --- SAT --- logarithmic time complexity


Book
Graph-Theoretic Problems and Their New Applications
Author:
ISBN: 3039287990 3039287982 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Graph theory is an important area of applied mathematics with a broad spectrum of applications in many fields. This book results from aSpecialIssue in the journal Mathematics entitled “Graph-Theoretic Problems and Their New Applications”. It contains 20 articles covering a broad spectrum of graph-theoretic works that were selected from 151 submitted papers after a thorough refereeing process. Among others, it includes a deep survey on mixed graphs and their use for solutions ti scheduling problems. Other subjects include topological indices, domination numbers of graphs, domination games, contraction mappings, and neutrosophic graphs. Several applications of graph theory are discussed, e.g., the use of graph theory in the context of molecular processes.

Keywords

Zagreb indices --- n/a --- generating function --- mitotic cell cycle --- Mycielskian graph --- evolution theory --- grids --- “partitions” of wheel graph --- generalized hypertree --- connectivity --- single-valued neutrosophic graph --- degree of a vertex --- domination game --- interval-valued intuitionistic fuzzy graph --- directed cycle --- makespan criterion --- total-colored graph --- bipartite matching extendable graph --- stochastic convergence --- bipartite neutrosophic graph --- signless Laplacian --- complete neutrosophic graph --- k-trees --- enhanced hypercube --- b-metric space --- resistance distance --- Wiener index --- mixed graph --- line graph --- NP-hard --- generalized first Zagreb index --- inverse degree index --- sum lordeg index --- Edge Wiener --- chromatic polynomial --- degree of vertex --- complement neutrosophic graph --- graphic contraction mappings --- embedding --- Cartesian product --- k-rainbow domination number --- distance between two vertices --- evolution algebra --- k-rainbow dominating function --- PI index --- subtree --- component --- competition-independence game --- interval-valued fuzzy graph --- b-metric-like space --- induced matching extendable --- edge coloring --- degree of edge --- approximation methods --- chromatic index --- join of graphs --- genetic algorithm --- hypergraph --- edge congestion --- complement --- polynomials in graphs --- vertex coloring --- interval-valued neutrosophic graph --- spanning tree --- Kempe chain --- general contractive mappings --- DD index --- wireless multihop network and social network --- distance --- evolutionary approach --- complexity analysis --- neutrosophic graph --- Kempe-locking --- wheel graph --- Birkhoff diamond --- domination number --- k-extendable --- degree-Kirchhoff index --- adjacent matrix --- perfect matching --- spectral radius --- normalized Laplacian --- corona product --- road transport network --- extremal values --- bound --- chromatic number --- graph coloring --- combinatorial optimization --- reformulated Zagreb indices --- wirelength --- intuitionistic fuzzy graph --- unit-time scheduling --- fan graph --- "partitions" of wheel graph

The Traveling Salesman Problem
Authors: --- ---
ISBN: 1283256118 9786613256119 1400841100 9781400841103 0691129932 9780691129938 9781283256117 Year: 2011 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The authors of this book are the same pioneers who for nearly two decades have led the investigation into the traveling salesman problem. They have derived solutions to almost eighty-six thousand cities, yet a general solution to the problem has yet to be discovered. Here they describe the method and computer code they used to solve a broad range of large-scale problems, and along the way they demonstrate the interplay of applied mathematics with increasingly powerful computing platforms. They also give the fascinating history of the problem--how it developed, and why it continues to intrigue us.

Keywords

Traveling salesman problem. --- TSP (Traveling salesman problem) --- Combinatorial optimization --- Graph theory --- Vehicle routing problem --- AT&T Labs. --- Accuracy and precision. --- Addition. --- Algorithm. --- Analysis of algorithms. --- Applied mathematics. --- Approximation algorithm. --- Approximation. --- Basic solution (linear programming). --- Best, worst and average case. --- Bifurcation theory. --- Big O notation. --- CPLEX. --- CPU time. --- Calculation. --- Chaos theory. --- Column generation. --- Combinatorial optimization. --- Computation. --- Computational resource. --- Computer. --- Connected component (graph theory). --- Connectivity (graph theory). --- Convex hull. --- Cutting-plane method. --- Delaunay triangulation. --- Determinism. --- Disjoint sets. --- Dynamic programming. --- Ear decomposition. --- Engineering. --- Enumeration. --- Equation. --- Estimation. --- Euclidean distance. --- Euclidean space. --- Family of sets. --- For loop. --- Genetic algorithm. --- George Dantzig. --- Georgia Institute of Technology. --- Greedy algorithm. --- Hamiltonian path. --- Hospitality. --- Hypergraph. --- Implementation. --- Instance (computer science). --- Institute. --- Integer. --- Iteration. --- Linear inequality. --- Linear programming. --- Mathematical optimization. --- Mathematics. --- Model of computation. --- Neuroscience. --- Notation. --- Operations research. --- Optimization problem. --- Order by. --- Pairwise. --- Parameter (computer programming). --- Parity (mathematics). --- Percentage. --- Polyhedron. --- Polytope. --- Pricing. --- Princeton University. --- Processing (programming language). --- Project. --- Quantity. --- Reduced cost. --- Requirement. --- Result. --- Rice University. --- Rutgers University. --- Scientific notation. --- Search algorithm. --- Search tree. --- Self-similarity. --- Simplex algorithm. --- Solution set. --- Solver. --- Source code. --- Special case. --- Stochastic. --- Subroutine. --- Subsequence. --- Subset. --- Summation. --- Test set. --- Theorem. --- Theory. --- Time complexity. --- Trade-off. --- Travelling salesman problem. --- Tree (data structure). --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics).


Book
Learning to Understand Remote Sensing Images,
Author:
ISBN: 3038976997 3038976989 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

metadata --- image classification --- sensitivity analysis --- ROI detection --- residual learning --- image alignment --- adaptive convolutional kernels --- Hough transform --- class imbalance --- land surface temperature --- inundation mapping --- multiscale representation --- object-based --- convolutional neural networks --- scene classification --- morphological profiles --- hyperedge weight estimation --- hyperparameter sparse representation --- semantic segmentation --- vehicle classification --- flood --- Landsat imagery --- target detection --- multi-sensor --- building damage detection --- optimized kernel minimum noise fraction (OKMNF) --- sea-land segmentation --- nonlinear classification --- land use --- SAR imagery --- anti-noise transfer network --- sub-pixel change detection --- Radon transform --- segmentation --- remote sensing image retrieval --- TensorFlow --- convolutional neural network --- particle swarm optimization --- optical sensors --- machine learning --- mixed pixel --- optical remotely sensed images --- object-based image analysis --- very high resolution images --- single stream optimization --- ship detection --- ice concentration --- online learning --- manifold ranking --- dictionary learning --- urban surface water extraction --- saliency detection --- spatial attraction model (SAM) --- quality assessment --- Fuzzy-GA decision making system --- land cover change --- multi-view canonical correlation analysis ensemble --- land cover --- semantic labeling --- sparse representation --- dimensionality expansion --- speckle filters --- hyperspectral imagery --- fully convolutional network --- infrared image --- Siamese neural network --- Random Forests (RF) --- feature matching --- color matching --- geostationary satellite remote sensing image --- change feature analysis --- road detection --- deep learning --- aerial images --- image segmentation --- aerial image --- multi-sensor image matching --- HJ-1A/B CCD --- endmember extraction --- high resolution --- multi-scale clustering --- heterogeneous domain adaptation --- hard classification --- regional land cover --- hypergraph learning --- automatic cluster number determination --- dilated convolution --- MSER --- semi-supervised learning --- gate --- Synthetic Aperture Radar (SAR) --- downscaling --- conditional random fields --- urban heat island --- hyperspectral image --- remote sensing image correction --- skip connection --- ISPRS --- spatial distribution --- geo-referencing --- Support Vector Machine (SVM) --- very high resolution (VHR) satellite image --- classification --- ensemble learning --- synthetic aperture radar --- conservation --- convolutional neural network (CNN) --- THEOS --- visible light and infrared integrated camera --- vehicle localization --- structured sparsity --- texture analysis --- DSFATN --- CNN --- image registration --- UAV --- unsupervised classification --- SVMs --- SAR image --- fuzzy neural network --- dimensionality reduction --- GeoEye-1 --- feature extraction --- sub-pixel --- energy distribution optimizing --- saliency analysis --- deep convolutional neural networks --- sparse and low-rank graph --- hyperspectral remote sensing --- tensor low-rank approximation --- optimal transport --- SELF --- spatiotemporal context learning --- Modest AdaBoost --- topic modelling --- multi-seasonal --- Segment-Tree Filtering --- locality information --- GF-4 PMS --- image fusion --- wavelet transform --- hashing --- machine learning techniques --- satellite images --- climate change --- road segmentation --- remote sensing --- tensor sparse decomposition --- Convolutional Neural Network (CNN) --- multi-task learning --- deep salient feature --- speckle --- canonical correlation weighted voting --- fully convolutional network (FCN) --- despeckling --- multispectral imagery --- ratio images --- linear spectral unmixing --- hyperspectral image classification --- multispectral images --- high resolution image --- multi-objective --- convolution neural network --- transfer learning --- 1-dimensional (1-D) --- threshold stability --- Landsat --- kernel method --- phase congruency --- subpixel mapping (SPM) --- tensor --- MODIS --- GSHHG database --- compressive sensing


Book
Learning to Understand Remote Sensing Images,
Author:
ISBN: 3038976857 3038976849 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

metadata --- image classification --- sensitivity analysis --- ROI detection --- residual learning --- image alignment --- adaptive convolutional kernels --- Hough transform --- class imbalance --- land surface temperature --- inundation mapping --- multiscale representation --- object-based --- convolutional neural networks --- scene classification --- morphological profiles --- hyperedge weight estimation --- hyperparameter sparse representation --- semantic segmentation --- vehicle classification --- flood --- Landsat imagery --- target detection --- multi-sensor --- building damage detection --- optimized kernel minimum noise fraction (OKMNF) --- sea-land segmentation --- nonlinear classification --- land use --- SAR imagery --- anti-noise transfer network --- sub-pixel change detection --- Radon transform --- segmentation --- remote sensing image retrieval --- TensorFlow --- convolutional neural network --- particle swarm optimization --- optical sensors --- machine learning --- mixed pixel --- optical remotely sensed images --- object-based image analysis --- very high resolution images --- single stream optimization --- ship detection --- ice concentration --- online learning --- manifold ranking --- dictionary learning --- urban surface water extraction --- saliency detection --- spatial attraction model (SAM) --- quality assessment --- Fuzzy-GA decision making system --- land cover change --- multi-view canonical correlation analysis ensemble --- land cover --- semantic labeling --- sparse representation --- dimensionality expansion --- speckle filters --- hyperspectral imagery --- fully convolutional network --- infrared image --- Siamese neural network --- Random Forests (RF) --- feature matching --- color matching --- geostationary satellite remote sensing image --- change feature analysis --- road detection --- deep learning --- aerial images --- image segmentation --- aerial image --- multi-sensor image matching --- HJ-1A/B CCD --- endmember extraction --- high resolution --- multi-scale clustering --- heterogeneous domain adaptation --- hard classification --- regional land cover --- hypergraph learning --- automatic cluster number determination --- dilated convolution --- MSER --- semi-supervised learning --- gate --- Synthetic Aperture Radar (SAR) --- downscaling --- conditional random fields --- urban heat island --- hyperspectral image --- remote sensing image correction --- skip connection --- ISPRS --- spatial distribution --- geo-referencing --- Support Vector Machine (SVM) --- very high resolution (VHR) satellite image --- classification --- ensemble learning --- synthetic aperture radar --- conservation --- convolutional neural network (CNN) --- THEOS --- visible light and infrared integrated camera --- vehicle localization --- structured sparsity --- texture analysis --- DSFATN --- CNN --- image registration --- UAV --- unsupervised classification --- SVMs --- SAR image --- fuzzy neural network --- dimensionality reduction --- GeoEye-1 --- feature extraction --- sub-pixel --- energy distribution optimizing --- saliency analysis --- deep convolutional neural networks --- sparse and low-rank graph --- hyperspectral remote sensing --- tensor low-rank approximation --- optimal transport --- SELF --- spatiotemporal context learning --- Modest AdaBoost --- topic modelling --- multi-seasonal --- Segment-Tree Filtering --- locality information --- GF-4 PMS --- image fusion --- wavelet transform --- hashing --- machine learning techniques --- satellite images --- climate change --- road segmentation --- remote sensing --- tensor sparse decomposition --- Convolutional Neural Network (CNN) --- multi-task learning --- deep salient feature --- speckle --- canonical correlation weighted voting --- fully convolutional network (FCN) --- despeckling --- multispectral imagery --- ratio images --- linear spectral unmixing --- hyperspectral image classification --- multispectral images --- high resolution image --- multi-objective --- convolution neural network --- transfer learning --- 1-dimensional (1-D) --- threshold stability --- Landsat --- kernel method --- phase congruency --- subpixel mapping (SPM) --- tensor --- MODIS --- GSHHG database --- compressive sensing

Listing 1 - 9 of 9
Sort by