Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Significant research efforts are currently being undertaken in the field of natural and synthetic polymers for a range of biomedical applications. (Co)polymer molecular structure, topology, self-assemblies, biodegradation, and hydrophobicity are of biomaterial importance for intrinsically biocompatible polymer systems. This book is comprised of nine chapters, published previously as original research contributions of the Special Issue focused on advances in polymeric materials for biomedical applications. The authors of these contributions are predominantly from central European countries, Italy and the United Kingdom. The content of this book will be of interest to scientists, scholars and students working in this area of knowledge, reflecting the progress in the development of advanced natural and synthetic polymer biomaterials.
Technology: general issues --- fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing
Choose an application
Significant research efforts are currently being undertaken in the field of natural and synthetic polymers for a range of biomedical applications. (Co)polymer molecular structure, topology, self-assemblies, biodegradation, and hydrophobicity are of biomaterial importance for intrinsically biocompatible polymer systems. This book is comprised of nine chapters, published previously as original research contributions of the Special Issue focused on advances in polymeric materials for biomedical applications. The authors of these contributions are predominantly from central European countries, Italy and the United Kingdom. The content of this book will be of interest to scientists, scholars and students working in this area of knowledge, reflecting the progress in the development of advanced natural and synthetic polymer biomaterials.
fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing
Choose an application
Significant research efforts are currently being undertaken in the field of natural and synthetic polymers for a range of biomedical applications. (Co)polymer molecular structure, topology, self-assemblies, biodegradation, and hydrophobicity are of biomaterial importance for intrinsically biocompatible polymer systems. This book is comprised of nine chapters, published previously as original research contributions of the Special Issue focused on advances in polymeric materials for biomedical applications. The authors of these contributions are predominantly from central European countries, Italy and the United Kingdom. The content of this book will be of interest to scientists, scholars and students working in this area of knowledge, reflecting the progress in the development of advanced natural and synthetic polymer biomaterials.
Technology: general issues --- fish gelatin --- citric acid --- electrospinning --- pH --- thermal treatment --- gelatin structure --- crosslinking degree --- dendrimer --- metallodendrimer --- acridine --- antimicrobial activity --- antibacterial cotton --- polystyrene --- nylon 6 --- electrospun fibers --- composite mesh --- proliferation --- roughness --- Ti6Al4V --- polydopamine --- antimicrobial peptides --- cathelicidin --- KR-12 --- polyhydroxyalkanoates --- oligo(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate) --- bioactive (co)oligoesters --- p-anisic acid derivatives --- hydrolytic degradation --- cosmetic delivery system --- ESI-MS --- multistage mass spectrometry --- whey protein isolate --- hydrogel --- tannic acid --- anticancer scaffold --- 3D printing --- fused deposition modelling (FDM) --- computer aided design (CAD) --- erosion test --- dissolution study --- dynamic light scattering (DLS) --- poly(2-isopropenyl-2-oxazoline) --- immunomodulation --- cytokines --- RAW 264.7 --- phagocytosis --- cell internalization --- antifungal --- thymoquinone --- ocimene --- miramistin amphotericin b --- bacterial cellulose --- wound dressing
Choose an application
This book focuses on some fundamental issues of polymers’ natural degradation. It is mostly devoted to the different aspects of biodegradation, but some data on the action of water, oxygen, ozone, and UV/Vis light is also included. The consideration of the biodegradation in vivo as the superposition of decay and synthesis provides the opportunity for a fresh look at well-known processes.
Research & information: general --- Chemistry --- gelatin methacryloyl --- osteoinduction --- tannic acid --- crosslinking --- hydrogel --- biodegradable --- poly(3-hydroxybutyrate) --- chitosan --- electrospinning --- thermal oxidation --- biodegradation --- Sturm’s method --- biodegradation rates --- arterial hypertension --- vertebral cartilage --- rhomboid fossa --- anaerobic digestion --- biosorbent --- biostimulant --- magnetite --- nanoparticles --- kinetic model --- polyvinyl chloride (PVC) --- pyrolysis --- thermogravimetric analysis (TGA) --- kinetics --- thermodynamics --- artificial neural networks (ANN) --- mechanochemical method --- recycled polyurethane foam --- orthogonal test --- tensile strength --- thermal conductivity --- enzymatic hydrolysis --- deep eutectic solvents --- polyethylene terephthalate --- Box-Behnken design --- microwave depolymerization --- biodegradable polyester --- ultrafine electrospun fibers --- tetraphenylporphyrin --- metalloporphyrin complexes --- Fe(III) --- Sn(IV) --- X-ray diffraction --- DSC --- spin probe EPR method --- SEM --- biopolymeric nanoparticles --- synthesis --- applications --- medicine --- agriculture --- mechanical recycling --- closed-loop --- polyolefins --- circular testing --- polymer degradation --- epoxy resin --- composite material --- hygrothermal ageing --- water diffusion --- Fick model deviation --- statistical analysis --- box plot --- PCA --- titanium silicon oxide --- hydrolytic degradation --- titania --- silica --- antimicrobial activity --- photocatalytic degradation --- n/a --- Sturm's method
Listing 1 - 4 of 4 |
Sort by
|