Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
New Advances of Cavitation Instabilities
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cavitation refers to the formation of vapor cavities in a liquid when the local pressure becomes lower than the saturation pressure. In many hydraulic applications, cavitation is considered as a non-desirable phenomenon, as far as it may cause performance degradation, vibration problems, enhance broad-band noise-emission, and eventually trigger erosion. In this Special Issue, recent findings about cavitation instabilities are reported. More precisely, the dynamics of cavitation sheets are explored at very low Reynolds numbers in laminar flows, and in microscale applications. Both experimental and numerical approach are used. For the latter, original methods are assessed, such as smooth particles hydrodynamics or detached eddy simulations coupled to a compressible approach.


Book
New Advances of Cavitation Instabilities
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cavitation refers to the formation of vapor cavities in a liquid when the local pressure becomes lower than the saturation pressure. In many hydraulic applications, cavitation is considered as a non-desirable phenomenon, as far as it may cause performance degradation, vibration problems, enhance broad-band noise-emission, and eventually trigger erosion. In this Special Issue, recent findings about cavitation instabilities are reported. More precisely, the dynamics of cavitation sheets are explored at very low Reynolds numbers in laminar flows, and in microscale applications. Both experimental and numerical approach are used. For the latter, original methods are assessed, such as smooth particles hydrodynamics or detached eddy simulations coupled to a compressible approach.

Keywords

Research & information: general --- Technology: general issues --- cavitation --- cavitation number --- globe valve --- valve cage --- computational fluid dynamics --- hydrodynamic cavitation --- compressible two-phase flow --- turbulence modelling --- system instabilities --- jet --- vortex --- mechanical surface treatment --- cavitation peening --- partial cavitation --- super-cavitation --- laminar cavitation --- cavitation instabilities --- vortex rope --- Francis turbine --- CFD --- RANS --- slamming --- fluid-structure interaction --- fluid detachment --- hydrofoil --- bulb turbine --- bulb turbine runner --- flow visualization --- cavitation tunnel --- regression model --- Kelvin-Helmholtz instability --- microchannel --- numerical simulation --- multifunction cavitation --- water jet cavitation --- ultrasonic cavitation --- high-temperature high-pressure cavitation --- peening natural aging --- low-temperature low-pressure cavitation --- peening aging --- Francis Turbine --- cavitation --- cavitation number --- globe valve --- valve cage --- computational fluid dynamics --- hydrodynamic cavitation --- compressible two-phase flow --- turbulence modelling --- system instabilities --- jet --- vortex --- mechanical surface treatment --- cavitation peening --- partial cavitation --- super-cavitation --- laminar cavitation --- cavitation instabilities --- vortex rope --- Francis turbine --- CFD --- RANS --- slamming --- fluid-structure interaction --- fluid detachment --- hydrofoil --- bulb turbine --- bulb turbine runner --- flow visualization --- cavitation tunnel --- regression model --- Kelvin-Helmholtz instability --- microchannel --- numerical simulation --- multifunction cavitation --- water jet cavitation --- ultrasonic cavitation --- high-temperature high-pressure cavitation --- peening natural aging --- low-temperature low-pressure cavitation --- peening aging --- Francis Turbine

Listing 1 - 2 of 2
Sort by