Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2021 (3)

Listing 1 - 6 of 6
Sort by

Book
Serious Games and Mixed Reality Applications for Healthcare
Authors: --- --- --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Virtual reality (VR) and augmented reality (AR) have long histories in the healthcare sector, offering the opportunity to develop a wide range of tools and applications aimed at improving the quality of care and efficiency of services for professionals and patients alike. The best-known examples of VR–AR applications in the healthcare domain include surgical planning and medical training by means of simulation technologies. Techniques used in surgical simulation have also been applied to cognitive and motor rehabilitation, pain management, and patient and professional education. Serious games are ones in which the main goal is not entertainment, but a crucial purpose, ranging from the acquisition of knowledge to interactive training.These games are attracting growing attention in healthcare because of their several benefits: motivation, interactivity, adaptation to user competence level, flexibility in time, repeatability, and continuous feedback. Recently, healthcare has also become one of the biggest adopters of mixed reality (MR), which merges real and virtual content to generate novel environments, where physical and digital objects not only coexist, but are also capable of interacting with each other in real time, encompassing both VR and AR applications.This Special Issue aims to gather and publish original scientific contributions exploring opportunities and addressing challenges in both the theoretical and applied aspects of VR–AR and MR applications in healthcare.


Book
Serious Games and Mixed Reality Applications for Healthcare
Authors: --- --- --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Virtual reality (VR) and augmented reality (AR) have long histories in the healthcare sector, offering the opportunity to develop a wide range of tools and applications aimed at improving the quality of care and efficiency of services for professionals and patients alike. The best-known examples of VR–AR applications in the healthcare domain include surgical planning and medical training by means of simulation technologies. Techniques used in surgical simulation have also been applied to cognitive and motor rehabilitation, pain management, and patient and professional education. Serious games are ones in which the main goal is not entertainment, but a crucial purpose, ranging from the acquisition of knowledge to interactive training.These games are attracting growing attention in healthcare because of their several benefits: motivation, interactivity, adaptation to user competence level, flexibility in time, repeatability, and continuous feedback. Recently, healthcare has also become one of the biggest adopters of mixed reality (MR), which merges real and virtual content to generate novel environments, where physical and digital objects not only coexist, but are also capable of interacting with each other in real time, encompassing both VR and AR applications.This Special Issue aims to gather and publish original scientific contributions exploring opportunities and addressing challenges in both the theoretical and applied aspects of VR–AR and MR applications in healthcare.


Book
Serious Games and Mixed Reality Applications for Healthcare
Authors: --- --- --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Virtual reality (VR) and augmented reality (AR) have long histories in the healthcare sector, offering the opportunity to develop a wide range of tools and applications aimed at improving the quality of care and efficiency of services for professionals and patients alike. The best-known examples of VR–AR applications in the healthcare domain include surgical planning and medical training by means of simulation technologies. Techniques used in surgical simulation have also been applied to cognitive and motor rehabilitation, pain management, and patient and professional education. Serious games are ones in which the main goal is not entertainment, but a crucial purpose, ranging from the acquisition of knowledge to interactive training.These games are attracting growing attention in healthcare because of their several benefits: motivation, interactivity, adaptation to user competence level, flexibility in time, repeatability, and continuous feedback. Recently, healthcare has also become one of the biggest adopters of mixed reality (MR), which merges real and virtual content to generate novel environments, where physical and digital objects not only coexist, but are also capable of interacting with each other in real time, encompassing both VR and AR applications.This Special Issue aims to gather and publish original scientific contributions exploring opportunities and addressing challenges in both the theoretical and applied aspects of VR–AR and MR applications in healthcare.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- reaction time --- accuracy rate --- serious game --- PC-based game --- MCI --- dementia --- elderly healthcare --- cognitive function --- surgical simulation --- augmented reality --- spine surgery --- hybrid simulator --- pedicle screws fixation training --- unity game engine --- healthcare simulation --- mixed reality --- hybrid --- medical training --- serious games --- rehabilitation --- elderly --- body tracking --- exercise games --- AMD --- salience --- virtual reality --- VR --- preventive care --- self-regulation --- assisted Neurofeedback --- neurostimulation --- mindfulness --- randomized --- serious games BCI --- exergames --- personalized exergames --- multicomponent training --- wearable sensors --- older adults --- game design --- interaction design --- mild cognitive impairment --- machine learning --- feature selection --- data transformations --- classification --- reaction time --- accuracy rate --- serious game --- PC-based game --- MCI --- dementia --- elderly healthcare --- cognitive function --- surgical simulation --- augmented reality --- spine surgery --- hybrid simulator --- pedicle screws fixation training --- unity game engine --- healthcare simulation --- mixed reality --- hybrid --- medical training --- serious games --- rehabilitation --- elderly --- body tracking --- exercise games --- AMD --- salience --- virtual reality --- VR --- preventive care --- self-regulation --- assisted Neurofeedback --- neurostimulation --- mindfulness --- randomized --- serious games BCI --- exergames --- personalized exergames --- multicomponent training --- wearable sensors --- older adults --- game design --- interaction design --- mild cognitive impairment --- machine learning --- feature selection --- data transformations --- classification


Book
Advancements in Real-Time Simulation of Power and Energy Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.

Keywords

Technology: general issues --- design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation


Book
Advancements in Real-Time Simulation of Power and Energy Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.

Keywords

design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation


Book
Advancements in Real-Time Simulation of Power and Energy Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.

Keywords

Technology: general issues --- design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation --- design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation

Listing 1 - 6 of 6
Sort by