Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.
History of engineering & technology --- grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy
Choose an application
Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.
grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy
Choose an application
Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.
History of engineering & technology --- grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy
Choose an application
Carbon emissions reached an all-time high in 2018, when global carbon dioxide emissions from burning fossil fuels increased by about 2.7%, after a 1.6% increase in 2017. Thus, we need to pay special attention to carbon emissions and work out possible solutions if we still want to meet the targets of the Paris climate agreement. This Special Issue collects 16 carbon emissions-related papers (including 5 that are carbon tax-related) and 4 energy-related papers using various methods or models, such as the input-output model, decoupling analysis, life cycle impact analysis (LCIA), relational analysis model, generalized Divisia index model (GDIM), forecasting model, three-indicator allocation model, mathematical programming, real options model, multiple linear regression, etc. The research studies come from China, Taiwan, Brazil, Thailand, and United States. These researches involved various industries such as agricultural industry, transportation industry, power industry, tire industry, textile industry, wave energy industry, natural gas industry, and petroleum industry. Although this Special Issue does not fully solve our concerns, it still provides abundant material for implementing energy conservation and carbon emissions reduction. However, there are still many issues regarding the problems caused by global warming that require research.
shale gas --- n/a --- Tapio’s model --- 1)) --- tea --- VARIMAX-ECM model --- wave energy converter --- error correction mechanism model --- low-carbon agriculture --- hybrid ship power systems --- greenhouse gas emissions --- STIRPAT model --- textile industry --- carbon tax --- refined oil distribution --- pushback control --- takeoff rate --- economic growth --- generalized regression neural network (GRNN) --- Industry 4.0 --- HOMER software --- population growth --- Markov forecasting model --- household consumption --- life cycle assessment --- green quality management --- agricultural-related sectors --- non-energy uses of fossil fuels --- investment under uncertainty --- CO2 emissions forecasting --- decoupling analysis --- CO2 emissions --- quotas allocation --- carbon price fluctuation --- final energy consumption --- ethylene supply --- household CO2 emissions (HCEs) --- green transportation --- Li-ion battery --- Activity-Based Costing (ABC) --- decoupling elasticity --- causal factors --- renewable energy --- per capita household CO2 emissions (PHCEs) --- shipping --- input–output model --- carbon intensity target --- climate change --- Monte Carlo method --- CLA Model --- energy intensity --- total carbon emissions --- mathematical programming --- sustainable development --- Generalized Divisia Index --- carbon trading --- influence factor --- tire industry --- socio-economic scenarios --- hybrid genetic algorithm --- economic growth and the environment --- non-linear programming --- environmental impact --- capacity expansion --- product-mix decision model --- influencing factors --- scenario forecast --- energy structure --- China --- carbon emissions --- inventory routing problem --- green manufacturing --- fairness --- power industry --- activity-based costing (ABC) --- aircraft --- electric power industry --- taxi time --- real options analysis --- carbon footprint --- LT-ARIMAXS model --- carbon intensity --- gray model (GM (1 --- reducing carbon emissions --- sustainable agriculture --- long-term --- Tapio's model --- input-output model
Choose an application
Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.
History of engineering & technology --- stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures
Choose an application
Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.
stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures
Choose an application
Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.
History of engineering & technology --- stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures
Listing 1 - 7 of 7 |
Sort by
|