Listing 1 - 10 of 35 | << page >> |
Sort by
|
Choose an application
The book at hand shows possibilities to derive requirements from customers’ usage behaviour based on recorded vehicle data. The focus lies on the derivation of mobility and driving profiles for a computer aided calculation of the fuel consumption. On this basis, the calculated fuel consumption is integrated into the creation of life cycle assessments and total cost of ownership calculations in order to evaluate vehicle concepts.
fuel consumption --- user behaviour --- Plug-in Hybridfahrzeug --- plug-in hybrid electric vehicle --- Nutzerverhalten --- driving pattern --- Kraftstoffverbrauch --- Fahrprofil --- mobility behaviour --- Mobilitätsprofil
Choose an application
Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.
LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy
Choose an application
Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.
History of engineering & technology --- LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy --- LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy
Choose an application
This authoritative new resource provides a comprehensive introduction to plug-in electric vehicles (PEVs), including critical discussions on energy storage and converter technology. The architecture and models for sustainable charging infrastructures and capacity planning of small scale fast charging stations are presented. This book considers PEVs as mobile storage units and explains how PEVS can provide services to the grid. Enabling technologies are explored, including energy storage, converter, and charger technologies for home and park charging. The adoption of EV is discussed and examples are given from the individual battery level to the city level.n nThis book provides guidance on how to build and design sustainable transportation systems. Optimal arrival rates, optimal service rates, facility location problems, load balancing, and demand forecasts are covered in this book. Time-saving MATLAB code and background tables are included in this resource to help engineers with their projects in the field.
Electric vehicles. --- Battery charging stations (Electric vehicles) --- Battery recharging stations (Electric vehicles) --- Charging points (Electric vehicles) --- Charging stations (Electric vehicles) --- Electric car charging stations --- Electric vehicle charging stations --- Electric vehicle supply equipment --- EV charging stations --- Hybrid electric vehicle charging stations --- Public charging stations (Electric vehicles) --- Battery chargers --- Electric vehicles --- Service stations --- EVs (Electric vehicles) --- Vehicles, Electric --- Motor vehicles --- Batteries
Choose an application
Transportation --- Battery charging stations (Electric vehicles) --- Planning. --- Battery recharging stations (Electric vehicles) --- Charging points (Electric vehicles) --- Charging stations (Electric vehicles) --- Electric car charging stations --- Electric vehicle charging stations --- Electric vehicle supply equipment --- EV charging stations --- Hybrid electric vehicle charging stations --- Public charging stations (Electric vehicles) --- Battery chargers --- Electric vehicles --- Service stations --- Transportation planning --- Batteries
Choose an application
Battery charging stations (Electric vehicles) --- Battery recharging stations (Electric vehicles) --- Charging points (Electric vehicles) --- Charging stations (Electric vehicles) --- Electric car charging stations --- Electric vehicle charging stations --- Electric vehicle supply equipment --- EV charging stations --- Hybrid electric vehicle charging stations --- Public charging stations (Electric vehicles) --- Battery chargers --- Electric vehicles --- Service stations --- Batteries
Choose an application
Battery charging stations (Electric vehicles) --- Battery recharging stations (Electric vehicles) --- Charging points (Electric vehicles) --- Charging stations (Electric vehicles) --- Electric car charging stations --- Electric vehicle charging stations --- Electric vehicle supply equipment --- EV charging stations --- Hybrid electric vehicle charging stations --- Public charging stations (Electric vehicles) --- Battery chargers --- Electric vehicles --- Service stations --- Batteries
Choose an application
Among the various factors greatly influencing the development process of future powertrain technologies, the trends in climate change and digitalization are of huge public interest. To handle these trends, new disruptive technologies are integrated into the development process. They open up space for diverse research which is distributed over the entire vehicle design process. This book contains recent research articles which incorporate results for selecting and designing powertrain topology in consideration of the vehicle operating strategy as well as results for handling the reliability of new powertrain components. The field of investigation spans from the identification of ecologically optimal transformation of the existent vehicle fleet to the development of machine learning-based operating strategies and the comparison of complex hybrid electric vehicle topologies to reduce CO2 emissions.
History of engineering & technology --- degree of hybridization --- energy management --- hybrid propulsion --- proton exchange membrane fuel cell --- simulink, supercapacitor --- fleet transition --- optimization --- life-cycle assessment --- greenhouse gas --- global warming potential --- vehicle powertrain concepts --- dedicated hybrid transmission --- benchmarking --- hybrid electric vehicle --- efficiency --- topology optimization --- drive train optimization --- powertrain concepts --- structural reliability --- uncertainties --- ensemble learning --- fault diagnosis --- VFS --- GA --- input feedforward --- fault observation --- pressure sensor --- aftermarket hybridization kit --- emissions mitigation --- local driving cycle --- plug-in hybrid electric vehicles --- vehicle efficiency --- plug-in hybrid electric vehicle --- electromechanical coupling --- electrified mechanical transmission --- multi-purpose vehicle --- machine learning --- powertrain control --- automatic re-training --- hybrid electric vehicles --- dynamic programming --- transmission --- vehicle emissions --- particle measurement programme (PMP) --- portable emissions measurement systems (PEMS) --- volatile removal efficiency --- non-volatiles --- solid particle number --- catalytic stripper --- evaporation tube --- artefact --- E-Mobility --- powertrain design --- high-speed --- electric machine design --- transmission design --- gearbox --- electric vehicles --- range extenders --- zinc-air battery --- lithium-ion battery --- electric vehicle transition --- Arrhenius model --- losses --- mission profile --- inverter --- powertrain --- Rainflow algorithm --- reliability --- thermal network --- electric vehicle --- degree of hybridization --- energy management --- hybrid propulsion --- proton exchange membrane fuel cell --- simulink, supercapacitor --- fleet transition --- optimization --- life-cycle assessment --- greenhouse gas --- global warming potential --- vehicle powertrain concepts --- dedicated hybrid transmission --- benchmarking --- hybrid electric vehicle --- efficiency --- topology optimization --- drive train optimization --- powertrain concepts --- structural reliability --- uncertainties --- ensemble learning --- fault diagnosis --- VFS --- GA --- input feedforward --- fault observation --- pressure sensor --- aftermarket hybridization kit --- emissions mitigation --- local driving cycle --- plug-in hybrid electric vehicles --- vehicle efficiency --- plug-in hybrid electric vehicle --- electromechanical coupling --- electrified mechanical transmission --- multi-purpose vehicle --- machine learning --- powertrain control --- automatic re-training --- hybrid electric vehicles --- dynamic programming --- transmission --- vehicle emissions --- particle measurement programme (PMP) --- portable emissions measurement systems (PEMS) --- volatile removal efficiency --- non-volatiles --- solid particle number --- catalytic stripper --- evaporation tube --- artefact --- E-Mobility --- powertrain design --- high-speed --- electric machine design --- transmission design --- gearbox --- electric vehicles --- range extenders --- zinc-air battery --- lithium-ion battery --- electric vehicle transition --- Arrhenius model --- losses --- mission profile --- inverter --- powertrain --- Rainflow algorithm --- reliability --- thermal network --- electric vehicle
Choose an application
Climate change, urban air quality, and dependency on crude oil are important societal challenges. In the transportation sector especially, clean and energy efficient technologies must be developed. Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have gained a growing interest in the vehicle industry. Nowadays, the commercialization of EVs and PHEVs has been possible in different applications (i.e., light duty, medium duty, and heavy duty vehicles) thanks to the advances in energy storage systems, power electronics converters (including DC/DC converters, DC/AC inverters, and battery charging systems), electric machines, and energy efficient power flow control strategies. This book is based on the Special Issue of the journal Applied Sciences on “Plug-In Hybrid Electric Vehicles (PHEVs)”. This collection of research articles includes topics such as novel propulsion systems, emerging power electronics and their control algorithms, emerging electric machines and control techniques, energy storage systems, including BMS, and efficient energy management strategies for hybrid propulsion, vehicle-to-grid (V2G), vehicle-to-home (V2H), grid-to-vehicle (G2V) technologies, and wireless power transfer (WPT) systems.
hybrid energy storage system --- plug-in hybrid electric vehicle --- Li-ion battery --- emerging electric machines --- lithium-ion capacitor --- electric vehicles (EVs) --- efficient energy management strategies for hybrid propulsion systems --- plug-in hybrid --- attributional --- electric vehicle --- energy system --- energy efficiency --- modified one-state hysteresis model --- air quality --- adaptive neuron-fuzzy inference system (ANFIS) --- Markov decision process (MDP) --- simulated annealing --- Paris Agreement --- mobility needs --- interleaved multiport converte --- dynamic programming --- state of health estimation --- strong track filter --- LCA --- modelling --- consequential --- losses model --- voltage vector distribution --- parallel hybrid electric vehicle --- electricity mix --- time-delay input --- convex optimization --- lifetime model --- artificial neural network (ANN) --- Li(Ni1/3Co1/3Mn1/3)O2 battery --- battery power --- CO2 --- capacity degradation --- regenerative braking --- open-end winding --- novel propulsion systems --- group method of data handling (GMDH) --- state of charge --- Well-to-Wheel --- energy storage systems --- including wide bandgap (WBG) technology --- wide bandgap (WBG) technologies --- marginal --- lithium polymer battery --- life-cycle assessment (LCA) --- energy management --- dual inverter --- lithium-ion battery --- measurements --- plug-in hybrid electric vehicles (PHEVs) --- emerging power electronics --- Q-learning (QL) --- fuel consumption characteristics --- Plugin Hybrid electric vehicle --- Energy Storage systems --- meta-analysis --- range-extender --- engine-on power --- reinforcement learning (RL) --- multi-objective genetic algorithm --- power sharing --- energy management strategy --- power distribution --- hybrid electric vehicles --- system modelling
Choose an application
Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.
History of engineering & technology --- LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy
Listing 1 - 10 of 35 | << page >> |
Sort by
|