Listing 1 - 7 of 7 |
Sort by
|
Choose an application
A variety of topics concerning ultrahigh-strength ferrous steels were collected in this book. At present, most of the ferrous steels are applied to cold sheet parts. However, they may be used as the materials of hot-forged parts in the future, because of the excellent performance of the mechanical properties. It is hoped that many researchers will have an interest in the applications of the ferrous steels to the hot-forging parts.
TRIP-aided martensitic steel --- case-hardening --- vacuum carburization --- fine-particle peening --- fatigue strength --- quenching and partitioning steel --- springback behavior --- strain heterogeneity --- metastable austenite --- deformation temperature --- deformation mechanisms --- tensile properties --- TRIP/TWIP steel --- strain-induced transformation --- microstructure --- mechanical property --- high carbon steel --- medium-Mn steel --- retained austenite --- Portevin–Le Chatelier phenomenon --- strain-induced martensitic transformation --- ultra-high strength steel --- Q& --- P --- TRIP --- lean medium Mn steel --- transformation kinetics --- hot-forging --- microalloying --- TRIP-aided bainitic ferrite steel --- tensile property --- impact toughness --- lean medium Mn Q& --- P steel --- stress-strain behavior --- mechanical properties --- retained austenite stability --- high-strength steel --- TRIP effect --- multiphase microstructure --- TRIP-aided steels --- hydrogen embrittlement --- n/a --- Portevin-Le Chatelier phenomenon
Choose an application
A variety of topics concerning ultrahigh-strength ferrous steels were collected in this book. At present, most of the ferrous steels are applied to cold sheet parts. However, they may be used as the materials of hot-forged parts in the future, because of the excellent performance of the mechanical properties. It is hoped that many researchers will have an interest in the applications of the ferrous steels to the hot-forging parts.
History of engineering & technology --- TRIP-aided martensitic steel --- case-hardening --- vacuum carburization --- fine-particle peening --- fatigue strength --- quenching and partitioning steel --- springback behavior --- strain heterogeneity --- metastable austenite --- deformation temperature --- deformation mechanisms --- tensile properties --- TRIP/TWIP steel --- strain-induced transformation --- microstructure --- mechanical property --- high carbon steel --- medium-Mn steel --- retained austenite --- Portevin-Le Chatelier phenomenon --- strain-induced martensitic transformation --- ultra-high strength steel --- Q& --- P --- TRIP --- lean medium Mn steel --- transformation kinetics --- hot-forging --- microalloying --- TRIP-aided bainitic ferrite steel --- tensile property --- impact toughness --- lean medium Mn Q& --- P steel --- stress-strain behavior --- mechanical properties --- retained austenite stability --- high-strength steel --- TRIP effect --- multiphase microstructure --- TRIP-aided steels --- hydrogen embrittlement
Choose an application
There is growing interest in light metallic alloys for a wide number of applications owing to their processing efficiency, processability, long service life, and environmental sustainability. Aluminum, magnesium, and titanium alloys are addressed in this Special Issue, however, the predominant role played by aluminum. The collection of papers published here covers a wide range of topics that generally characterize the performance of the alloys after manufacturing by conventional and innovative processing routes.
fatigue properties --- hydroforming --- AlSi12Cu1(Fe) --- magnesium alloy --- microstructure --- Ti6Al4V titanium alloy --- FEM simulation --- aging treatment --- AlSi11Cu2(Fe) --- titanium aluminides --- commercially pure titanium --- hot working --- quenching process --- hot rolling --- 7003 alloy --- compressive strength --- plastic strain --- precipitation --- constitutive equations --- processing temperature --- material property --- hot forging --- wear resistance --- hot deformation behavior --- solid solution hardening --- microstructural changes --- fatigue behavior --- hardening criteria --- AlSi10Mg alloy --- 7XXX Al alloy --- hot compression --- creep --- Al-5Mg wire electrode --- ultra-fine grain --- mechanical properties --- cooling rate --- residual stress --- thermomechanical treatment --- remanufacturing --- hot workability --- activation energy --- mechanical alloying --- selective laser melting --- alloy --- Al alloy --- dynamic recrystallization --- springback --- wire feedability --- cold rolling --- spray deposited --- rotary-die equal-channel angular pressing --- adhesion strength --- microarc oxidation --- aluminum alloy --- Zr --- processing map --- Al–Si alloy --- UNS A92024-T3 --- Al-Si-Cu alloys --- sludge --- high pressure die casting --- fractography --- 2024-T4 aluminum alloys --- anode pulse-width --- consolidation --- high temperature --- AlSi9Cu3(Fe) --- FEP --- resistance spot welding --- intermetallics --- tensile properties --- tensile property --- iron
Choose an application
In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with a lower weight, smaller size, and extended functionality, but also with a higher resistance against specific stresses. Mono-material components, which are produced by established processes, feature limited properties according to their respective material characteristics. Thus, a significant increase in production quality and efficiency can only be reached by combining different materials in a hybrid metal component. In this way, components with tailored properties can be manufactured that meet the locally varying requirements. Through the local use of different materials within a component, for example, the weight or the use of expensive alloying elements can be reduced. The aim of this Special Issue is to cover the recent progress and new developments regarding all aspects of hybrid bulk metal components. This includes fundamental questions regarding the joining, forming, finishing, simulation, and testing of hybrid metal parts.
Technology: general issues --- tailored forming --- bulk metal forming --- geometry measurement --- wrought-hot objects --- turning --- process monitoring --- feeling machine --- benchmark --- lateral angular co-extrusion --- mechanical behavior --- hybrid metal components --- ultrasound --- laser beam welding --- excitation methods --- melt pool dynamics --- nickel base alloy 2.4856 --- membrane mode enhanced cohesive zone elements --- damage --- joining zone --- cross-wedge rolling --- welding --- PTA --- LMD-W --- forming --- rolling --- coating --- hybrid bearing --- residual stresses --- X-ray diffraction --- rolling contact fatigue --- bearing fatigue life --- AISI 52100 --- plasma transferred arc welding --- residual stress --- scanning acoustic microscopy --- hybrid components --- bevel gears --- hot forging --- process-integrated heat treatment --- air-water spray cooling --- self-tempering --- aluminum-steel compound --- intermetallic phases --- co-extrusion --- nanoindentation --- multi-material --- IZEO --- topology optimization --- computer-aided engineering environment --- GPDA --- manufacturing restrictions --- composites --- HSHPT --- nano multilayers --- Ni-Ti --- SPD --- friction welding --- surface geometry modification
Choose an application
A variety of topics concerning ultrahigh-strength ferrous steels were collected in this book. At present, most of the ferrous steels are applied to cold sheet parts. However, they may be used as the materials of hot-forged parts in the future, because of the excellent performance of the mechanical properties. It is hoped that many researchers will have an interest in the applications of the ferrous steels to the hot-forging parts.
History of engineering & technology --- TRIP-aided martensitic steel --- case-hardening --- vacuum carburization --- fine-particle peening --- fatigue strength --- quenching and partitioning steel --- springback behavior --- strain heterogeneity --- metastable austenite --- deformation temperature --- deformation mechanisms --- tensile properties --- TRIP/TWIP steel --- strain-induced transformation --- microstructure --- mechanical property --- high carbon steel --- medium-Mn steel --- retained austenite --- Portevin–Le Chatelier phenomenon --- strain-induced martensitic transformation --- ultra-high strength steel --- Q& --- P --- TRIP --- lean medium Mn steel --- transformation kinetics --- hot-forging --- microalloying --- TRIP-aided bainitic ferrite steel --- tensile property --- impact toughness --- lean medium Mn Q& --- P steel --- stress-strain behavior --- mechanical properties --- retained austenite stability --- high-strength steel --- TRIP effect --- multiphase microstructure --- TRIP-aided steels --- hydrogen embrittlement --- n/a --- Portevin-Le Chatelier phenomenon
Choose an application
In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with a lower weight, smaller size, and extended functionality, but also with a higher resistance against specific stresses. Mono-material components, which are produced by established processes, feature limited properties according to their respective material characteristics. Thus, a significant increase in production quality and efficiency can only be reached by combining different materials in a hybrid metal component. In this way, components with tailored properties can be manufactured that meet the locally varying requirements. Through the local use of different materials within a component, for example, the weight or the use of expensive alloying elements can be reduced. The aim of this Special Issue is to cover the recent progress and new developments regarding all aspects of hybrid bulk metal components. This includes fundamental questions regarding the joining, forming, finishing, simulation, and testing of hybrid metal parts.
tailored forming --- bulk metal forming --- geometry measurement --- wrought-hot objects --- turning --- process monitoring --- feeling machine --- benchmark --- lateral angular co-extrusion --- mechanical behavior --- hybrid metal components --- ultrasound --- laser beam welding --- excitation methods --- melt pool dynamics --- nickel base alloy 2.4856 --- membrane mode enhanced cohesive zone elements --- damage --- joining zone --- cross-wedge rolling --- welding --- PTA --- LMD-W --- forming --- rolling --- coating --- hybrid bearing --- residual stresses --- X-ray diffraction --- rolling contact fatigue --- bearing fatigue life --- AISI 52100 --- plasma transferred arc welding --- residual stress --- scanning acoustic microscopy --- hybrid components --- bevel gears --- hot forging --- process-integrated heat treatment --- air-water spray cooling --- self-tempering --- aluminum-steel compound --- intermetallic phases --- co-extrusion --- nanoindentation --- multi-material --- IZEO --- topology optimization --- computer-aided engineering environment --- GPDA --- manufacturing restrictions --- composites --- HSHPT --- nano multilayers --- Ni-Ti --- SPD --- friction welding --- surface geometry modification
Choose an application
In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with a lower weight, smaller size, and extended functionality, but also with a higher resistance against specific stresses. Mono-material components, which are produced by established processes, feature limited properties according to their respective material characteristics. Thus, a significant increase in production quality and efficiency can only be reached by combining different materials in a hybrid metal component. In this way, components with tailored properties can be manufactured that meet the locally varying requirements. Through the local use of different materials within a component, for example, the weight or the use of expensive alloying elements can be reduced. The aim of this Special Issue is to cover the recent progress and new developments regarding all aspects of hybrid bulk metal components. This includes fundamental questions regarding the joining, forming, finishing, simulation, and testing of hybrid metal parts.
Technology: general issues --- tailored forming --- bulk metal forming --- geometry measurement --- wrought-hot objects --- turning --- process monitoring --- feeling machine --- benchmark --- lateral angular co-extrusion --- mechanical behavior --- hybrid metal components --- ultrasound --- laser beam welding --- excitation methods --- melt pool dynamics --- nickel base alloy 2.4856 --- membrane mode enhanced cohesive zone elements --- damage --- joining zone --- cross-wedge rolling --- welding --- PTA --- LMD-W --- forming --- rolling --- coating --- hybrid bearing --- residual stresses --- X-ray diffraction --- rolling contact fatigue --- bearing fatigue life --- AISI 52100 --- plasma transferred arc welding --- residual stress --- scanning acoustic microscopy --- hybrid components --- bevel gears --- hot forging --- process-integrated heat treatment --- air-water spray cooling --- self-tempering --- aluminum-steel compound --- intermetallic phases --- co-extrusion --- nanoindentation --- multi-material --- IZEO --- topology optimization --- computer-aided engineering environment --- GPDA --- manufacturing restrictions --- composites --- HSHPT --- nano multilayers --- Ni-Ti --- SPD --- friction welding --- surface geometry modification
Listing 1 - 7 of 7 |
Sort by
|