Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULiège (7)

VIVES (7)

Vlaams Parlement (7)

More...

Resource type

book (14)


Language

English (14)


Year
From To Submit

2021 (8)

2020 (3)

2019 (3)

Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.

Keywords

History of engineering & technology --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating-bending fatigue --- tension-compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti-Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating-bending fatigue --- tension-compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti-Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion


Book
Recent Advancements in Metallic Glasses
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.

Keywords

Information technology industries --- metallic glasses --- defects --- structural relaxation --- heat effects --- shear elasticity --- interstitialcy theory --- mechanical spectroscopy --- mixing enthalpy --- Kohlrausch-Williams-Watts equation --- structural heterogeneity --- metallic glass --- twin roll casting --- GFA --- MicroCT --- hydrogen --- indentation --- pop-in --- plasticity --- nanoglasses --- structure evolution --- properties --- bulk metallic glass --- shear band --- dislocation theory --- scanning white light interferometry --- high-pressure torsion --- severe plastic deformation --- transmitting electron microscopy --- X-ray diffraction --- differential scanning calorimetry --- free volume --- shear modulus --- composite --- amorphous alloy --- nanolaminate --- hardness --- crack resistance --- nanostructure --- HPT deformation --- metastable phases --- metallic glasses --- defects --- structural relaxation --- heat effects --- shear elasticity --- interstitialcy theory --- mechanical spectroscopy --- mixing enthalpy --- Kohlrausch-Williams-Watts equation --- structural heterogeneity --- metallic glass --- twin roll casting --- GFA --- MicroCT --- hydrogen --- indentation --- pop-in --- plasticity --- nanoglasses --- structure evolution --- properties --- bulk metallic glass --- shear band --- dislocation theory --- scanning white light interferometry --- high-pressure torsion --- severe plastic deformation --- transmitting electron microscopy --- X-ray diffraction --- differential scanning calorimetry --- free volume --- shear modulus --- composite --- amorphous alloy --- nanolaminate --- hardness --- crack resistance --- nanostructure --- HPT deformation --- metastable phases


Book
Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.

Keywords

History of engineering & technology --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating–bending fatigue --- tension–compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti–Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- n/a --- rotating-bending fatigue --- tension-compression fatigue --- Ti-Fe


Book
Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.

Keywords

Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating–bending fatigue --- tension–compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti–Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- n/a --- rotating-bending fatigue --- tension-compression fatigue --- Ti-Fe


Book
Material and Process Design for Lightweight Structures
Author:
ISBN: 3038979597 3038979589 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of lightweight structures across several industries has become inevitable in today’s world given the ever-rising demand for improved fuel economy and resource efficiency. In the automotive industry, composites, reinforced plastics, and lightweight materials, such as aluminum and magnesium are being adopted by many OEMs at increasing rates to reduce vehicle mass and develop efficient new lightweight designs. Automotive weight reduction with high-strength steel is also witnessing major ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient, lightweight steel components. Although great progress has been made over the past decades in understanding the thermomechanical behavior of these materials, their extensive use as lightweight solutions is still limited due to numerous challenges that play a key role in cost competitiveness. Hence, significant research efforts are still required to fully understand the anisotropic material behavior, failure mechanisms, and, most importantly, the interplay between industrial processing, microstructure development, and the resulting properties. This Special Issue reprint book features concise reports on the current status in the field. The topics discussed herein include areas of manufacturing and processing technologies of materials for lightweight applications, innovative microstructure and process design concepts, and advanced characterization techniques combined with modeling of material’s behavior.


Book
Recent Advancements in Metallic Glasses
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.


Book
Recent Advancements in Metallic Glasses
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.


Book
Structure and Mechanical Properties of Transition Group Metals, Alloys, and Intermetallic Compounds
Author:
ISBN: 3039211471 3039211463 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this Special Issue is to present the latest theoretical and experimental achievements concerning the mechanisms of microstructural change in metallic materials subject to different processing methods, and their effect on mechanical properties. It is my pleasure to present a series of compelling scientific papers written by scientists from the community of transition group metals, alloys, and intermetallic compounds.

Keywords

delamination --- laser metal deposition --- metal matrix composites (MMCs) --- magnesium alloy --- laminate --- microstructure --- CoCrMoSi alloy coatings --- high-pressure torsion --- twin roll casting --- mechanical characterization --- AZ91 --- solidification thermal parameters --- deformation behavior --- additive manufacturing --- fatigue --- Ti-6Al-4V --- composite --- laser engineered net shaping --- tribaloy-type alloy --- spark plasma sintering --- cross-channel extrusion (CCE) --- magnesium alloys --- Z-pin reinforcement --- creep --- metal matrix composites --- z-pinning --- Ti3SiC2 --- mechanical properties --- ultrafine microstructure --- hardness --- Cu-Al-Ni-Fe bronze alloys --- z-pin reinforcement --- high pressure torsion --- high energy ball milling --- phase dissolution --- carbon fiber --- MAX phase --- honeycomb structure --- Ti6Al4V alloy --- energy absorption --- laser processing --- physical modeling technique (PMT) --- Mg-Zn-Al-Ca alloy --- metal–matrix composites (MMCs) --- processing map --- titanium alloys --- AA2519 --- LENS --- T-800 alloy --- numerical simulation (FEM) --- Cu–Ag alloy --- specific intermetallics --- calcium --- back pressure (BP) --- texture --- high pressure die casting --- fractography --- microhardness --- heat treatment --- structure --- flow curve --- dynamic tests --- strengthening mechanisms --- electron microscopy (in situ SEM) --- friction stir welding --- Laves phase --- Laser Engineered Net Shaping (LENSTM) --- Inconel 625 --- severe plastic deformation (SPD)


Book
Complex Concentrated Alloys (CCAs) : Current Understanding and Future Opportunities
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of several unique articles on the current state of research on complex concentrated alloys, as well as their compelling future opportunities in wide ranging applications. Complex concentrated alloys consist of multiple principal elements and represent a new paradigm in structural alloy design. They show a range of exceptional properties that are unachievable in conventional alloys, including high strength–ductility combination, resistance to oxidation, corrosion/wear resistance, and excellent high-temperature properties. The research articles, reviews, and perspectives are intended to provide a wholistic view of this multidisciplinary subject of interest to scientists and engineers.

Keywords

History of engineering & technology --- high-entropy alloy --- laser cladding --- microstructure --- slurry erosion --- Nb/SiC composite material --- hot pressing sintering --- mechanical property --- corrosion --- surface degradation --- wear --- high entropy alloys --- complex concentrated alloys --- potentiodynamic polarization --- erosion-corrosion --- slurry-erosion --- oxidation wear --- highly wear resistant coatings --- multi-principal element alloys --- computational models --- first-principles calculations --- molecular dynamics --- phases --- properties --- dislocation nucleation --- activation volume --- activation energy --- nano-indentation --- high/medium entropy alloys --- spark plasma sintering --- pressure --- mechanical properties --- high-entropy --- high pressure --- high pressure torsion --- diamond anvil cells --- CoCrFeMnNi high entropy alloys --- additive manufacturing --- corrosion behavior --- non-equilibrium microstructure --- micro-pores --- high-entropy alloys --- corrosion resistance --- wear resistance --- serrated flow --- thermal coarsening --- actuators --- phase transformation --- nanoporous metals and alloys --- AlCoCrFeNi2.1 --- CCA --- HEA --- aging --- precipitates --- tribology --- creep --- stress exponent --- data analysis --- high-entropy alloy --- laser cladding --- microstructure --- slurry erosion --- Nb/SiC composite material --- hot pressing sintering --- mechanical property --- corrosion --- surface degradation --- wear --- high entropy alloys --- complex concentrated alloys --- potentiodynamic polarization --- erosion-corrosion --- slurry-erosion --- oxidation wear --- highly wear resistant coatings --- multi-principal element alloys --- computational models --- first-principles calculations --- molecular dynamics --- phases --- properties --- dislocation nucleation --- activation volume --- activation energy --- nano-indentation --- high/medium entropy alloys --- spark plasma sintering --- pressure --- mechanical properties --- high-entropy --- high pressure --- high pressure torsion --- diamond anvil cells --- CoCrFeMnNi high entropy alloys --- additive manufacturing --- corrosion behavior --- non-equilibrium microstructure --- micro-pores --- high-entropy alloys --- corrosion resistance --- wear resistance --- serrated flow --- thermal coarsening --- actuators --- phase transformation --- nanoporous metals and alloys --- AlCoCrFeNi2.1 --- CCA --- HEA --- aging --- precipitates --- tribology --- creep --- stress exponent --- data analysis


Book
Complex Concentrated Alloys (CCAs) : Current Understanding and Future Opportunities
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of several unique articles on the current state of research on complex concentrated alloys, as well as their compelling future opportunities in wide ranging applications. Complex concentrated alloys consist of multiple principal elements and represent a new paradigm in structural alloy design. They show a range of exceptional properties that are unachievable in conventional alloys, including high strength–ductility combination, resistance to oxidation, corrosion/wear resistance, and excellent high-temperature properties. The research articles, reviews, and perspectives are intended to provide a wholistic view of this multidisciplinary subject of interest to scientists and engineers.

Listing 1 - 10 of 14 << page
of 2
>>
Sort by