Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
In recent years, marine genomics has become a growning rapidly field, helped by the large amount of information that is becoming available to the international scientific community. Taking into account the current excitement in the field of marine biotechnology, this Special Issue entitled “Genome Mining and Synthetic Biology in Marine Natural Product Discovery” aims to to assess the impact of these molecular approaches on the discovery of bioactive compounds from marine organisms. The term “genome mining” is used to identify all bioinformatic investigations aimed at detecting the biosynthetic pathways of bioactive natural products and their possible functional and chemical interactions. Several studies are now reporting on marine organisms. Oceans cover nearly 70% of the Earth’s surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”, with the urgent goal of discovering new drugs.
Technology: general issues --- genome mining --- global regulator --- LaeA --- overexpression --- Penicillium dipodomyis --- sorbicillinoids --- ulvan-derived oligosaccharides --- ulvan lyase --- heterologous expression --- polysaccharide lyase family 25 --- whole-genome sequencing --- docosahexaenoic acid (DHA) --- polyunsaturated fatty acid --- fatty acid synthesis pathway --- polyketide synthase pathway --- bacteria --- fungi --- natural products --- synthetic biology --- microalgae --- monogalactosyldiacylglycerol synthase --- UDP-sulfoquinovose synthase --- sulfoquinovosyltransferase --- monogalactosyldiacylglycerols --- sulfoquinovosyldiacylglycerols --- transcriptome analysis --- n/a
Choose an application
In recent years, marine genomics has become a growning rapidly field, helped by the large amount of information that is becoming available to the international scientific community. Taking into account the current excitement in the field of marine biotechnology, this Special Issue entitled “Genome Mining and Synthetic Biology in Marine Natural Product Discovery” aims to to assess the impact of these molecular approaches on the discovery of bioactive compounds from marine organisms. The term “genome mining” is used to identify all bioinformatic investigations aimed at detecting the biosynthetic pathways of bioactive natural products and their possible functional and chemical interactions. Several studies are now reporting on marine organisms. Oceans cover nearly 70% of the Earth’s surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”, with the urgent goal of discovering new drugs.
genome mining --- global regulator --- LaeA --- overexpression --- Penicillium dipodomyis --- sorbicillinoids --- ulvan-derived oligosaccharides --- ulvan lyase --- heterologous expression --- polysaccharide lyase family 25 --- whole-genome sequencing --- docosahexaenoic acid (DHA) --- polyunsaturated fatty acid --- fatty acid synthesis pathway --- polyketide synthase pathway --- bacteria --- fungi --- natural products --- synthetic biology --- microalgae --- monogalactosyldiacylglycerol synthase --- UDP-sulfoquinovose synthase --- sulfoquinovosyltransferase --- monogalactosyldiacylglycerols --- sulfoquinovosyldiacylglycerols --- transcriptome analysis --- n/a
Choose an application
In recent years, marine genomics has become a growning rapidly field, helped by the large amount of information that is becoming available to the international scientific community. Taking into account the current excitement in the field of marine biotechnology, this Special Issue entitled “Genome Mining and Synthetic Biology in Marine Natural Product Discovery” aims to to assess the impact of these molecular approaches on the discovery of bioactive compounds from marine organisms. The term “genome mining” is used to identify all bioinformatic investigations aimed at detecting the biosynthetic pathways of bioactive natural products and their possible functional and chemical interactions. Several studies are now reporting on marine organisms. Oceans cover nearly 70% of the Earth’s surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”, with the urgent goal of discovering new drugs.
Technology: general issues --- genome mining --- global regulator --- LaeA --- overexpression --- Penicillium dipodomyis --- sorbicillinoids --- ulvan-derived oligosaccharides --- ulvan lyase --- heterologous expression --- polysaccharide lyase family 25 --- whole-genome sequencing --- docosahexaenoic acid (DHA) --- polyunsaturated fatty acid --- fatty acid synthesis pathway --- polyketide synthase pathway --- bacteria --- fungi --- natural products --- synthetic biology --- microalgae --- monogalactosyldiacylglycerol synthase --- UDP-sulfoquinovose synthase --- sulfoquinovosyltransferase --- monogalactosyldiacylglycerols --- sulfoquinovosyldiacylglycerols --- transcriptome analysis
Choose an application
This Special Issue aims to highlight the dual potential of novel biocatalytic processes, where the first part is dedicated to waste valorization for the production of high value products, while the second part is focused on the detoxification of pollutants. Several examples of microbial systems employed for the valorization of waste streams derived by the forest, agricultural, and food industries or the use of whole-cell or enzyme approaches for the removal of nitrogen or dyes from industrial wastewaters are provided. Last but not least, an example of the utilization of polyhydroxyalkanoates (PHAs) was highlighted for the production of fatty acids, which were used for the enzymatic synthesis of sugar esters with antimicrobial properties.
Technology: general issues --- mixotrophic --- heterotrophic --- lipids --- fatty acid methyl esters --- dairy wastewater --- birch hydrolysate --- green algae --- Coelastrella --- Chlorella --- DyP peroxidase --- oxidoreductase --- reactive dye --- decolorization --- biopolymers --- medium chain length polyhydroxyalkanoates (PHA) --- hydrolysed waste cooking oil --- Pseudomonas putida KT2440 --- biocatalysis --- bioprocess --- polyhydroxyalkanoate --- (R)-3-hydroxyacids --- sugar esters --- antimicrobial --- anammox --- immobilization --- wastewater treatment --- polyvinyl alcohol --- olive mill waste --- lignocellulosic residues --- Ganoderma lucidum --- Pleurotus ostreatus --- medicinal mushrooms --- glucan --- prebiotic --- Lactobacillus --- Bifidobacterium --- waste valorization --- laccase --- genome-mining --- heterologous expression --- Pseudomonas --- non-digestible oligosaccharides --- Celluclast® --- cellobiose --- conduritol-B-epoxide --- lignocellulose enzyme hydrolysis --- n/a
Choose an application
Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue
Research & information: general --- biocatalysis --- glycosidases --- isomerases --- Pichia pastoris --- sweeteners --- rare sugars --- cheese whey --- sustainable chemistry --- penicillin acylase --- aculeacin acylase --- N-acyl-homoserine lactone acylases --- quorum quenching --- biofouling --- estolides --- castor oil --- lipase --- candida antarctica lipase A --- Arabidopsis thaliana --- hydroxynitrile lyase --- oxynitrilase --- His-tag --- immobilization --- batch --- continuous flow --- Geobacillus thermocatenolatus --- lipases --- ethanolysis --- ionic liquids --- kinetic resolution --- mandelic acid --- Aspergillus --- fermentation --- filamentous fungi --- genetic engineering --- heterologous expression --- recombinant protein --- secretion --- transcriptional regulation --- n/a --- Halohydrin dehalogenases --- conformational dynamics --- active site tunnels --- molecular dynamics simulations --- omega-3 ethyl esters --- monkfish liver oil --- COSMO-RS --- fungal resting cells --- selectivity --- ketone body ester --- asymmetric synthesis --- configuration inversion
Choose an application
Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue
biocatalysis --- glycosidases --- isomerases --- Pichia pastoris --- sweeteners --- rare sugars --- cheese whey --- sustainable chemistry --- penicillin acylase --- aculeacin acylase --- N-acyl-homoserine lactone acylases --- quorum quenching --- biofouling --- estolides --- castor oil --- lipase --- candida antarctica lipase A --- Arabidopsis thaliana --- hydroxynitrile lyase --- oxynitrilase --- His-tag --- immobilization --- batch --- continuous flow --- Geobacillus thermocatenolatus --- lipases --- ethanolysis --- ionic liquids --- kinetic resolution --- mandelic acid --- Aspergillus --- fermentation --- filamentous fungi --- genetic engineering --- heterologous expression --- recombinant protein --- secretion --- transcriptional regulation --- n/a --- Halohydrin dehalogenases --- conformational dynamics --- active site tunnels --- molecular dynamics simulations --- omega-3 ethyl esters --- monkfish liver oil --- COSMO-RS --- fungal resting cells --- selectivity --- ketone body ester --- asymmetric synthesis --- configuration inversion
Choose an application
This Special Issue aims to highlight the dual potential of novel biocatalytic processes, where the first part is dedicated to waste valorization for the production of high value products, while the second part is focused on the detoxification of pollutants. Several examples of microbial systems employed for the valorization of waste streams derived by the forest, agricultural, and food industries or the use of whole-cell or enzyme approaches for the removal of nitrogen or dyes from industrial wastewaters are provided. Last but not least, an example of the utilization of polyhydroxyalkanoates (PHAs) was highlighted for the production of fatty acids, which were used for the enzymatic synthesis of sugar esters with antimicrobial properties.
mixotrophic --- heterotrophic --- lipids --- fatty acid methyl esters --- dairy wastewater --- birch hydrolysate --- green algae --- Coelastrella --- Chlorella --- DyP peroxidase --- oxidoreductase --- reactive dye --- decolorization --- biopolymers --- medium chain length polyhydroxyalkanoates (PHA) --- hydrolysed waste cooking oil --- Pseudomonas putida KT2440 --- biocatalysis --- bioprocess --- polyhydroxyalkanoate --- (R)-3-hydroxyacids --- sugar esters --- antimicrobial --- anammox --- immobilization --- wastewater treatment --- polyvinyl alcohol --- olive mill waste --- lignocellulosic residues --- Ganoderma lucidum --- Pleurotus ostreatus --- medicinal mushrooms --- glucan --- prebiotic --- Lactobacillus --- Bifidobacterium --- waste valorization --- laccase --- genome-mining --- heterologous expression --- Pseudomonas --- non-digestible oligosaccharides --- Celluclast® --- cellobiose --- conduritol-B-epoxide --- lignocellulose enzyme hydrolysis --- n/a
Choose an application
This Special Issue aims to highlight the dual potential of novel biocatalytic processes, where the first part is dedicated to waste valorization for the production of high value products, while the second part is focused on the detoxification of pollutants. Several examples of microbial systems employed for the valorization of waste streams derived by the forest, agricultural, and food industries or the use of whole-cell or enzyme approaches for the removal of nitrogen or dyes from industrial wastewaters are provided. Last but not least, an example of the utilization of polyhydroxyalkanoates (PHAs) was highlighted for the production of fatty acids, which were used for the enzymatic synthesis of sugar esters with antimicrobial properties.
Technology: general issues --- mixotrophic --- heterotrophic --- lipids --- fatty acid methyl esters --- dairy wastewater --- birch hydrolysate --- green algae --- Coelastrella --- Chlorella --- DyP peroxidase --- oxidoreductase --- reactive dye --- decolorization --- biopolymers --- medium chain length polyhydroxyalkanoates (PHA) --- hydrolysed waste cooking oil --- Pseudomonas putida KT2440 --- biocatalysis --- bioprocess --- polyhydroxyalkanoate --- (R)-3-hydroxyacids --- sugar esters --- antimicrobial --- anammox --- immobilization --- wastewater treatment --- polyvinyl alcohol --- olive mill waste --- lignocellulosic residues --- Ganoderma lucidum --- Pleurotus ostreatus --- medicinal mushrooms --- glucan --- prebiotic --- Lactobacillus --- Bifidobacterium --- waste valorization --- laccase --- genome-mining --- heterologous expression --- Pseudomonas --- non-digestible oligosaccharides --- Celluclast® --- cellobiose --- conduritol-B-epoxide --- lignocellulose enzyme hydrolysis
Choose an application
Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue
Research & information: general --- biocatalysis --- glycosidases --- isomerases --- Pichia pastoris --- sweeteners --- rare sugars --- cheese whey --- sustainable chemistry --- penicillin acylase --- aculeacin acylase --- N-acyl-homoserine lactone acylases --- quorum quenching --- biofouling --- estolides --- castor oil --- lipase --- candida antarctica lipase A --- Arabidopsis thaliana --- hydroxynitrile lyase --- oxynitrilase --- His-tag --- immobilization --- batch --- continuous flow --- Geobacillus thermocatenolatus --- lipases --- ethanolysis --- ionic liquids --- kinetic resolution --- mandelic acid --- Aspergillus --- fermentation --- filamentous fungi --- genetic engineering --- heterologous expression --- recombinant protein --- secretion --- transcriptional regulation --- Halohydrin dehalogenases --- conformational dynamics --- active site tunnels --- molecular dynamics simulations --- omega-3 ethyl esters --- monkfish liver oil --- COSMO-RS --- fungal resting cells --- selectivity --- ketone body ester --- asymmetric synthesis --- configuration inversion
Choose an application
Natural compounds, from terrestrial and marine sources, are the result of an evolutionary process which originated in compounds with great structural diversity, multiple biological activities and miscellaneous applications. A large and very active research field is dedicated to identifying biosynthesized compounds; to improve/develop new methodologies to produce/reuse natural compounds; to assess their potential; and to understand their mechanism of action. This Special Issue brings together excellent original and review works, focused on the most recent advances related to the secondary metabolites’ composition of natural sources, and the proposal of new applications for their constituents, such as therapeutic agents, and pesticides or food ingredients.
heterologous expression --- Streptomyces --- secondary metabolite --- Garcinia xanthochymus --- growth inhibitory compounds --- allelopathy --- vanillic acid --- methyl phloretate --- allelopathic activity --- growth inhibitor --- phenolic compounds --- bioherbicide --- sustainable agriculture --- pulsed electric fields --- green extraction --- microalgae --- antioxidants --- pigments --- thymoquinone --- UHRF1 --- ubiquitination --- HAUSP --- tumor suppressor genes --- aaptoline B --- pyrroloquinoline --- Ag(I)-catalyzed cycloisomerization --- dopaminergic neuroprotection --- Parkinson’s disease --- bioactive compounds --- cardiovascular --- nanodelivery --- bioavailability --- Ailanthus altissima --- biological properties --- analytical techniques --- potential applications --- propolis contamination --- propolis cytotoxicity --- antimicrobial activity --- antiprotozoal activity --- artepelin C --- formononetin --- pinocembrin --- quercetin --- kaempferol --- propolis extract --- Asparagopsis armata --- Rhodophyta --- GC-MS --- UHPLC-MS --- dibrominated compounds --- 1,4-dibromobuten-1-ol --- palmitic acid --- brominated phenolics --- red seaweed --- invasive seaweed --- invasive species --- flowers --- antioxidant --- microbial activity --- bioactivity --- enzyme inhibitory potential --- acetylcholinesterase --- lipase --- α-glucosidase --- n/a --- Parkinson's disease
Listing 1 - 10 of 21 | << page >> |
Sort by
|