Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Vegetables are an important part of the human diet due to their nutrient density and, at the same time, low calorie content. Producers of vegetable crops mainly aim at achieving high yields with good external quality. However, there is an increasing demand of consumers for vegetables that provide good sensory properties and are rich in secondary compounds that can be valuable for human health. Sub- or supra-optimal abiotic conditions, like high temperatures, drought, excess light, salinity or nutrient deficiency, may alter the composition of vegetable crops and at the same time, result in yield loss. Thus, producers need to adapt their horticultural practices such as through the choice of variety, irrigation regime, light management, fruit thinning, or fertilizer application to improve the yield and quality of the vegetable product. In the future, altered climate conditions such as elevated atmospheric CO2 concentrations, rising temperatures, or altered precipitation patterns may become additional challenges for producers of vegetable crops, especially those that cultivate in the open field. This raises the need for optimized horticultural practices in order to minimize abiotic stresses. As well, specific storage conditions can have large impacts on the quality of vegetables. This Special Issue compiles research that deals with the optimization of vegetable product quality (e.g. sensory aspects, composition) under sub- or supra-optimal abiotic conditions.
Research & information: general --- ascorbic acid --- biostimulants --- Allium cepa --- Phulkara --- Nasarpuri --- Lambada and Red Bone --- gibberex --- Momordica charantia L --- dismutase --- peroxidase --- catalase --- vegetative growth --- flesh firmness --- flowering --- harvest time --- lycopene --- rootstock-scion combination --- total soluble solids --- elevated CO₂ --- modified atmosphere package --- sensory and physiological-biochemical characteristics --- total phenol --- DPPH --- heirloom beans --- drought --- abiotic stress --- local farming --- nutraceutical properties --- zinc --- Solanum lycopersicum --- drought potassium --- vacuolar transporter --- tomato --- product quality --- nitrogen --- shelf life --- carotenoids --- antioxidants --- taste --- minerals --- fatty acids --- oxalate --- nitrate --- phytochemicals --- ammonium --- climate change --- food quality --- photosynthesis --- nitrogen source --- vegetable --- Ocimum basilicum --- salt --- NaCl --- yield --- quality --- polyphenols --- grafting --- water-use efficiency --- nutrient use efficiency --- vegetable production --- n/a
Choose an application
Vegetables are an important part of the human diet due to their nutrient density and, at the same time, low calorie content. Producers of vegetable crops mainly aim at achieving high yields with good external quality. However, there is an increasing demand of consumers for vegetables that provide good sensory properties and are rich in secondary compounds that can be valuable for human health. Sub- or supra-optimal abiotic conditions, like high temperatures, drought, excess light, salinity or nutrient deficiency, may alter the composition of vegetable crops and at the same time, result in yield loss. Thus, producers need to adapt their horticultural practices such as through the choice of variety, irrigation regime, light management, fruit thinning, or fertilizer application to improve the yield and quality of the vegetable product. In the future, altered climate conditions such as elevated atmospheric CO2 concentrations, rising temperatures, or altered precipitation patterns may become additional challenges for producers of vegetable crops, especially those that cultivate in the open field. This raises the need for optimized horticultural practices in order to minimize abiotic stresses. As well, specific storage conditions can have large impacts on the quality of vegetables. This Special Issue compiles research that deals with the optimization of vegetable product quality (e.g. sensory aspects, composition) under sub- or supra-optimal abiotic conditions.
ascorbic acid --- biostimulants --- Allium cepa --- Phulkara --- Nasarpuri --- Lambada and Red Bone --- gibberex --- Momordica charantia L --- dismutase --- peroxidase --- catalase --- vegetative growth --- flesh firmness --- flowering --- harvest time --- lycopene --- rootstock-scion combination --- total soluble solids --- elevated CO₂ --- modified atmosphere package --- sensory and physiological-biochemical characteristics --- total phenol --- DPPH --- heirloom beans --- drought --- abiotic stress --- local farming --- nutraceutical properties --- zinc --- Solanum lycopersicum --- drought potassium --- vacuolar transporter --- tomato --- product quality --- nitrogen --- shelf life --- carotenoids --- antioxidants --- taste --- minerals --- fatty acids --- oxalate --- nitrate --- phytochemicals --- ammonium --- climate change --- food quality --- photosynthesis --- nitrogen source --- vegetable --- Ocimum basilicum --- salt --- NaCl --- yield --- quality --- polyphenols --- grafting --- water-use efficiency --- nutrient use efficiency --- vegetable production --- n/a
Choose an application
Vegetables are an important part of the human diet due to their nutrient density and, at the same time, low calorie content. Producers of vegetable crops mainly aim at achieving high yields with good external quality. However, there is an increasing demand of consumers for vegetables that provide good sensory properties and are rich in secondary compounds that can be valuable for human health. Sub- or supra-optimal abiotic conditions, like high temperatures, drought, excess light, salinity or nutrient deficiency, may alter the composition of vegetable crops and at the same time, result in yield loss. Thus, producers need to adapt their horticultural practices such as through the choice of variety, irrigation regime, light management, fruit thinning, or fertilizer application to improve the yield and quality of the vegetable product. In the future, altered climate conditions such as elevated atmospheric CO2 concentrations, rising temperatures, or altered precipitation patterns may become additional challenges for producers of vegetable crops, especially those that cultivate in the open field. This raises the need for optimized horticultural practices in order to minimize abiotic stresses. As well, specific storage conditions can have large impacts on the quality of vegetables. This Special Issue compiles research that deals with the optimization of vegetable product quality (e.g. sensory aspects, composition) under sub- or supra-optimal abiotic conditions.
Research & information: general --- ascorbic acid --- biostimulants --- Allium cepa --- Phulkara --- Nasarpuri --- Lambada and Red Bone --- gibberex --- Momordica charantia L --- dismutase --- peroxidase --- catalase --- vegetative growth --- flesh firmness --- flowering --- harvest time --- lycopene --- rootstock-scion combination --- total soluble solids --- elevated CO₂ --- modified atmosphere package --- sensory and physiological-biochemical characteristics --- total phenol --- DPPH --- heirloom beans --- drought --- abiotic stress --- local farming --- nutraceutical properties --- zinc --- Solanum lycopersicum --- drought potassium --- vacuolar transporter --- tomato --- product quality --- nitrogen --- shelf life --- carotenoids --- antioxidants --- taste --- minerals --- fatty acids --- oxalate --- nitrate --- phytochemicals --- ammonium --- climate change --- food quality --- photosynthesis --- nitrogen source --- vegetable --- Ocimum basilicum --- salt --- NaCl --- yield --- quality --- polyphenols --- grafting --- water-use efficiency --- nutrient use efficiency --- vegetable production
Choose an application
Plants, including vegetables, are an essential element of the human diet, considering their dense nutritional content and bioactive content that could assist in boosting nutritional quality and food security. Plants are exhibiting a colossal rebound in the context of healthier lifestyles, especially as functional foods empowered with bioactive phytochemicals; they synthesize uncountable “ecochemicals” via secondary metabolism, which command medical and socioeconomic significance. Among these secondary metabolites, phenolic compounds are of prime interest and are largely present in medicinal plants, herbs, vegetables, and flowers. These metabolites are at the helm of the bitterness, color, and scent of plants, and are correlated to the beneficial health qualities expressed by the antioxidant capacity. The accretion of these health-promoting phytochemicals depends chiefly on the genetic material and the maturity stage at harvest, notwithstanding the main role that is played by preharvest factors, i.e., eustress, fertilization, irrigation, light, biostimulants, biofortification, and other agronomic practices. This Special Issue is a collection of 11 original research articles addressing the quality of seeds, microgreens, leafy vegetables, herbs, flowers, berries, fruits, and byproducts. Mainly preharvest factors were assessed regarding their effect on the qualitative aspects of the aforementioned plants.
Research & information: general --- Biology, life sciences --- chromium --- ethnopharmacology --- flavonoids --- glucose-lowering activity --- HPLC --- natural antioxidants --- polyphenol --- air humidity (RH) --- Lactuca sativa L. var. capitata --- controlled environment agriculture (CEA) --- bioactive compounds --- leaf gas exchange --- minerals profile --- genetic material --- protected horticulture --- crop sensor --- functional components --- reflectance spectroscopy --- Apiaceae --- seeds --- antioxidants --- potassium --- total dissolved solids --- protein --- growing season --- Cichorium endivia L. var. crispum Hegi --- yield --- sugars --- mineral profile --- iodine concentration --- functional compounds --- space-stored seeds --- Solanum lycopersicum L. --- weightlessness --- cosmic radiation --- macronutrients --- Spinacia oleracea L. --- carotenoids --- nitrates --- phenolic acids --- UHPLC-HRMS --- chlorophylls --- vitamin C --- trans-resveratrol --- esters --- terpenols --- glycosidic precursors --- harvest time --- Vitis vinifera --- tomato and carrot by-products --- freezing and drying impact --- antioxidant capacity --- polyphenolics --- vitamin E --- greenhouse clear film --- greenhouse diffuse-light film --- spinach yield --- nitrate content --- antioxidant activity --- ascorbic acid --- floating raft system --- biostimulant --- root application --- anthocyanins --- phenols --- reduced sugars --- carbohydrates --- minerals --- pigments --- n/a
Choose an application
The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.
Technology: general issues --- unmanned aerial vehicle --- urban LULC --- GEOBIA --- multiscale classification --- unmanned aircraft system (UAS) --- deep learning --- super-resolution (SR) --- convolutional neural network (CNN) --- generative adversarial network (GAN) --- structure-from-motion --- photogrammetry --- remote sensing --- UAV --- 3D-model --- surveying --- vertical wall --- snow --- remotely piloted aircraft systems --- structure from motion --- lidar --- forests --- orthophotography --- construction planning --- sustainable construction --- urbanism --- BIM --- building maintenance --- unmanned aerial vehicle (UAV) --- structure-from-motion (SfM) --- ground control points (GCP) --- accuracy assessment --- point clouds --- corridor mapping --- UAV photogrammetry --- terrain modeling --- vegetation removal --- unmanned aerial vehicles --- power lines --- image-based reconstruction --- 3D reconstruction --- unmanned aerial systems --- time series --- accuracy --- reproducibility --- orthomosaic --- validation --- drone --- GNSS RTK --- precision --- elevation --- multispectral imaging --- vegetation indices --- nutritional analysis --- correlation --- optimal harvest time --- UAV images --- monoscopic mapping --- stereoscopic plotting --- image overlap --- optimal image selection --- n/a
Choose an application
Plants, including vegetables, are an essential element of the human diet, considering their dense nutritional content and bioactive content that could assist in boosting nutritional quality and food security. Plants are exhibiting a colossal rebound in the context of healthier lifestyles, especially as functional foods empowered with bioactive phytochemicals; they synthesize uncountable “ecochemicals” via secondary metabolism, which command medical and socioeconomic significance. Among these secondary metabolites, phenolic compounds are of prime interest and are largely present in medicinal plants, herbs, vegetables, and flowers. These metabolites are at the helm of the bitterness, color, and scent of plants, and are correlated to the beneficial health qualities expressed by the antioxidant capacity. The accretion of these health-promoting phytochemicals depends chiefly on the genetic material and the maturity stage at harvest, notwithstanding the main role that is played by preharvest factors, i.e., eustress, fertilization, irrigation, light, biostimulants, biofortification, and other agronomic practices. This Special Issue is a collection of 11 original research articles addressing the quality of seeds, microgreens, leafy vegetables, herbs, flowers, berries, fruits, and byproducts. Mainly preharvest factors were assessed regarding their effect on the qualitative aspects of the aforementioned plants.
chromium --- ethnopharmacology --- flavonoids --- glucose-lowering activity --- HPLC --- natural antioxidants --- polyphenol --- air humidity (RH) --- Lactuca sativa L. var. capitata --- controlled environment agriculture (CEA) --- bioactive compounds --- leaf gas exchange --- minerals profile --- genetic material --- protected horticulture --- crop sensor --- functional components --- reflectance spectroscopy --- Apiaceae --- seeds --- antioxidants --- potassium --- total dissolved solids --- protein --- growing season --- Cichorium endivia L. var. crispum Hegi --- yield --- sugars --- mineral profile --- iodine concentration --- functional compounds --- space-stored seeds --- Solanum lycopersicum L. --- weightlessness --- cosmic radiation --- macronutrients --- Spinacia oleracea L. --- carotenoids --- nitrates --- phenolic acids --- UHPLC-HRMS --- chlorophylls --- vitamin C --- trans-resveratrol --- esters --- terpenols --- glycosidic precursors --- harvest time --- Vitis vinifera --- tomato and carrot by-products --- freezing and drying impact --- antioxidant capacity --- polyphenolics --- vitamin E --- greenhouse clear film --- greenhouse diffuse-light film --- spinach yield --- nitrate content --- antioxidant activity --- ascorbic acid --- floating raft system --- biostimulant --- root application --- anthocyanins --- phenols --- reduced sugars --- carbohydrates --- minerals --- pigments --- n/a
Choose an application
The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.
unmanned aerial vehicle --- urban LULC --- GEOBIA --- multiscale classification --- unmanned aircraft system (UAS) --- deep learning --- super-resolution (SR) --- convolutional neural network (CNN) --- generative adversarial network (GAN) --- structure-from-motion --- photogrammetry --- remote sensing --- UAV --- 3D-model --- surveying --- vertical wall --- snow --- remotely piloted aircraft systems --- structure from motion --- lidar --- forests --- orthophotography --- construction planning --- sustainable construction --- urbanism --- BIM --- building maintenance --- unmanned aerial vehicle (UAV) --- structure-from-motion (SfM) --- ground control points (GCP) --- accuracy assessment --- point clouds --- corridor mapping --- UAV photogrammetry --- terrain modeling --- vegetation removal --- unmanned aerial vehicles --- power lines --- image-based reconstruction --- 3D reconstruction --- unmanned aerial systems --- time series --- accuracy --- reproducibility --- orthomosaic --- validation --- drone --- GNSS RTK --- precision --- elevation --- multispectral imaging --- vegetation indices --- nutritional analysis --- correlation --- optimal harvest time --- UAV images --- monoscopic mapping --- stereoscopic plotting --- image overlap --- optimal image selection --- n/a
Choose an application
Plants, including vegetables, are an essential element of the human diet, considering their dense nutritional content and bioactive content that could assist in boosting nutritional quality and food security. Plants are exhibiting a colossal rebound in the context of healthier lifestyles, especially as functional foods empowered with bioactive phytochemicals; they synthesize uncountable “ecochemicals” via secondary metabolism, which command medical and socioeconomic significance. Among these secondary metabolites, phenolic compounds are of prime interest and are largely present in medicinal plants, herbs, vegetables, and flowers. These metabolites are at the helm of the bitterness, color, and scent of plants, and are correlated to the beneficial health qualities expressed by the antioxidant capacity. The accretion of these health-promoting phytochemicals depends chiefly on the genetic material and the maturity stage at harvest, notwithstanding the main role that is played by preharvest factors, i.e., eustress, fertilization, irrigation, light, biostimulants, biofortification, and other agronomic practices. This Special Issue is a collection of 11 original research articles addressing the quality of seeds, microgreens, leafy vegetables, herbs, flowers, berries, fruits, and byproducts. Mainly preharvest factors were assessed regarding their effect on the qualitative aspects of the aforementioned plants.
Research & information: general --- Biology, life sciences --- chromium --- ethnopharmacology --- flavonoids --- glucose-lowering activity --- HPLC --- natural antioxidants --- polyphenol --- air humidity (RH) --- Lactuca sativa L. var. capitata --- controlled environment agriculture (CEA) --- bioactive compounds --- leaf gas exchange --- minerals profile --- genetic material --- protected horticulture --- crop sensor --- functional components --- reflectance spectroscopy --- Apiaceae --- seeds --- antioxidants --- potassium --- total dissolved solids --- protein --- growing season --- Cichorium endivia L. var. crispum Hegi --- yield --- sugars --- mineral profile --- iodine concentration --- functional compounds --- space-stored seeds --- Solanum lycopersicum L. --- weightlessness --- cosmic radiation --- macronutrients --- Spinacia oleracea L. --- carotenoids --- nitrates --- phenolic acids --- UHPLC-HRMS --- chlorophylls --- vitamin C --- trans-resveratrol --- esters --- terpenols --- glycosidic precursors --- harvest time --- Vitis vinifera --- tomato and carrot by-products --- freezing and drying impact --- antioxidant capacity --- polyphenolics --- vitamin E --- greenhouse clear film --- greenhouse diffuse-light film --- spinach yield --- nitrate content --- antioxidant activity --- ascorbic acid --- floating raft system --- biostimulant --- root application --- anthocyanins --- phenols --- reduced sugars --- carbohydrates --- minerals --- pigments
Choose an application
The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.
Technology: general issues --- unmanned aerial vehicle --- urban LULC --- GEOBIA --- multiscale classification --- unmanned aircraft system (UAS) --- deep learning --- super-resolution (SR) --- convolutional neural network (CNN) --- generative adversarial network (GAN) --- structure-from-motion --- photogrammetry --- remote sensing --- UAV --- 3D-model --- surveying --- vertical wall --- snow --- remotely piloted aircraft systems --- structure from motion --- lidar --- forests --- orthophotography --- construction planning --- sustainable construction --- urbanism --- BIM --- building maintenance --- unmanned aerial vehicle (UAV) --- structure-from-motion (SfM) --- ground control points (GCP) --- accuracy assessment --- point clouds --- corridor mapping --- UAV photogrammetry --- terrain modeling --- vegetation removal --- unmanned aerial vehicles --- power lines --- image-based reconstruction --- 3D reconstruction --- unmanned aerial systems --- time series --- accuracy --- reproducibility --- orthomosaic --- validation --- drone --- GNSS RTK --- precision --- elevation --- multispectral imaging --- vegetation indices --- nutritional analysis --- correlation --- optimal harvest time --- UAV images --- monoscopic mapping --- stereoscopic plotting --- image overlap --- optimal image selection
Listing 1 - 9 of 9 |
Sort by
|