Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.
n/a --- washout filter --- turbine and generator --- unbalanced power grid --- PV --- transient dynamics --- multi-input single output (MISO) --- permanent magnet synchronous generator (PMSG) --- static frequency characteristics --- impedance analysis --- FACTS devices --- coordinated control --- improved additional frequency control --- experiment --- resonant controller --- two-stage photovoltaic power --- voltage cancellation --- energy --- power matching --- LCL filter --- adaptive-MPPT (maximum power point tracking) --- VSC --- active power filter --- perturb and observe --- coordination control --- voltage-type control --- multiple VSGs --- wind power prediction --- linear quadratic regulator --- multiport converter (MPC) --- grid support function --- power ripple elimination --- adaptive resonant controller --- phase space reconstruction --- sliding mode control --- impedance emulation --- photovoltaic systems --- grid-connected converter --- SVM --- photovoltaic generators --- power grid --- active front-end converter --- THD --- type-4 wind turbine --- inertia --- ROCOF --- microgrid --- coupled oscillators --- multilevel power converter --- DC-AC power converters --- internal model --- back-to-back converter --- duty-ratio constraints --- selective harmonic mitigation --- parallel inverters --- discontinuous conduction mode --- droop control --- step size --- grid-connected --- inverter --- short-circuit fault --- energy router --- oscillation mitigation --- improved-VSG (virtual synchronous generator) --- source and load impedance --- synchronverter --- digital signal processor (DSP) TMS320F28335 --- operation optimization --- battery-energy storage --- generator speed control --- electrical power generation --- virtual impedance --- weak grid --- doubly-fed induction generator --- grid synchronization --- Energy Internet --- open circuit voltage --- state-of-charge balancing --- renewable power system --- control strategies --- adaptive notch filter (ANF) --- renewable energy --- hardware in the loop (HIL) --- energy storage --- microgrids --- inertia and damping characteristics --- electric vehicle --- multi-energy complementary --- static compensator --- stability --- battery energy storage system --- power-hardware-in- the-loop --- electricity price --- notch filter --- time series --- distorted grid --- oscillation suppression --- phase-locked loop (PLL) --- modules --- organic Rankine cycle --- failure zone --- Opal-RT Technologies® --- distributed generation --- modular multilevel converter --- governor --- microgrid (MG) --- second-life battery --- thermoelectric generator --- stability analysis --- wind energy system --- variable coefficient regulation --- single ended primary inductor converter (SEPIC) --- error --- soft switching --- power electronics --- PLL --- SPWM --- virtual synchronous generator --- perturbation frequency --- phase shifted --- grid-connected inverter --- cloud computing --- low inertia --- boost converter --- impedance reshaping --- small-signal and transient stability --- speed control --- multivariate linear regression --- photovoltaic --- adaptive control --- frequency regulation --- variable power tracking control --- power converters --- maximum power point tracking --- virtual admittance --- synchronization --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- demand response
Choose an application
This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.
total harmonic distortion (THD) --- imperialist competitive algorithm --- fault detection --- automatic current balance --- small signal modeling --- phase-shifted PWM --- voltage balance control --- parasitic switching states --- multi-terminal DC network (MTDC) --- DC-link capacitor voltage balancing --- high efficiency drive --- modular multilevel converters --- DC-link voltage balancing --- power factor correction --- selected harmonic elimination --- Continuous Wavelet Transform --- power flow analysis --- T-type inverter --- electrical drives --- modular multilevel converter (MMC) --- computational cost --- fault location --- voltage imbalance --- DC-link capacitor design --- multilevel active-clamped converter --- dc-link capacitor voltage balance --- voltage ripple --- commutation --- model predictive control (MPC) --- voltage fluctuation --- multi-motor drive --- Balance of capacitor voltage --- on-board battery charger --- single-phase three-level NPC converter --- Suppression of CMV --- redundant switching combination --- ACTPSS --- model predictive control --- three-loop --- finite control set model predictive control --- current estimation --- five-level --- fault-tolerant control --- offset voltage injection --- harmonic component --- current unmeasurable areas --- LC filter --- computational burden --- interleaved buck --- three-level converter --- IGBT short-circuit --- SVPWM --- harmonic --- DC side fault blocking --- three-phase to single-phase cascaded converter --- single shunt resistor --- buck-chopper --- power factor --- modulation techniques --- modular multilevel converters (MMC) --- permanent magnet synchronous generator --- sorting networks --- alternating current (AC) motor drive --- space vector pulse width modulation (SVPWM) --- open end winding motor --- minimum voltage injection (MVI) method --- transmission line --- shift method --- genetic algorithm --- electric vehicle --- active filter --- NPC/H Bridge --- battery energy storage system (BESS) --- digital controller --- neutral-point-clamped (NPC) inverter --- motor drive --- hybrid modulated model predictive control --- level-shifted PWM --- optimal output voltage level --- Phase Disposition PWM --- open-end winding configuration --- modular multilevel converter --- multilevel power converters --- simplified PWM strategy --- MMC-MTDC --- tolerance for battery power unbalance --- three-level neutral point clamped inverter (NPCI) --- real time simulator --- harmonic mitigation --- reverse prediction --- multilevel inverters --- field-programmable gate array --- current reconstruction method --- digital signal processors (DSP) --- three-level boost --- multilevel converter --- improved PQ algorithm --- low-harmonic DC ice-melting device --- PV-simulator --- total harmonic distortion --- voltage balancing --- Sub-module (SM) fault --- DC–DC conversion --- smart grid --- Cascaded H-bridge multilevel inverter (CHBMI) --- dynamic reactive --- field-oriented control --- capacitor voltage balancing --- energy saving --- high reliability applications --- three-phase inverter --- substation’s voltage stability --- three-level boost DC-DC converter --- power quality --- T-type converter --- voltage source inverter --- state-of-charge (SOC) balancing control --- multi-point DC control --- predictive control --- Differential Comparison Low-Voltage Detection Method (DCLVDM)
Listing 1 - 2 of 2 |
Sort by
|