Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Function Classes on the Unit Disc
Authors: ---
ISBN: 3110281902 9783110281903 3110281236 9783110281231 3110281910 9783110281910 9781306429634 1306429633 3110281910 9783110281910 Year: 2013 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic.


Book
Recent Developments of Function Spaces and Their Applications I
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book includes 13 papers concerning some of the recent progress in the theory of function spaces and its applications. The involved function spaces include Morrey and weak Morrey spaces, Hardy-type spaces, John–Nirenberg spaces, Sobolev spaces, and Besov and Triebel–Lizorkin spaces on different underlying spaces, and they are applied in the study of problems ranging from harmonic analysis to potential analysis and partial differential equations, such as the boundedness of paraproducts and Calderón operators, the characterization of pointwise multipliers, estimates of anisotropic logarithmic potential, as well as certain Dirichlet problems for the Schrödinger equation.


Book
Recent Developments of Function Spaces and Their Applications I
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book includes 13 papers concerning some of the recent progress in the theory of function spaces and its applications. The involved function spaces include Morrey and weak Morrey spaces, Hardy-type spaces, John–Nirenberg spaces, Sobolev spaces, and Besov and Triebel–Lizorkin spaces on different underlying spaces, and they are applied in the study of problems ranging from harmonic analysis to potential analysis and partial differential equations, such as the boundedness of paraproducts and Calderón operators, the characterization of pointwise multipliers, estimates of anisotropic logarithmic potential, as well as certain Dirichlet problems for the Schrödinger equation.

Keywords

Research & information: general --- Mathematics & science --- expansive matrix --- (mixed-norm) Hardy space --- molecule --- Calderón–Zygmund operator --- real interpolation --- besov space --- meyer wavelet --- Euclidean space --- cube --- congruent cube --- BMO --- JNp --- (localized) John–Nirenberg–Campanato space --- Riesz–Morrey space --- vanishing John–Nirenberg space --- duality --- commutator --- commutators --- Riesz potential --- homogeneous group --- space of homogeneous type --- paraproduct --- T(1) theorem --- hardy space --- bilinear estimate --- Hajłasz–Sobolev space --- Hajłasz–Besov space --- Hajłasz–Triebel–Lizorkin space --- generalized smoothness --- Lebesgue point --- capacity --- pointwise multipliers --- Morrey spaces --- block spaces --- convexification --- Calderón operator --- Hardy’s inequality --- variable Lebesgue space --- local Morrey space --- local block space --- extrapolation --- anisotropy --- Hardy space --- continuous ellipsoid cover --- maximal function --- anisotropic log-potential --- optimal polynomial inequality --- annulus body --- dual log-mixed volume --- Sobolev spaces --- compact manifolds --- tensor bundles --- differential operators --- Triebel–Lizorkin space --- Hardy inequality --- uniform domain --- fractional Laplacian --- Schrödinger equation --- Morrey space --- Dirichlet problem --- metric measure space --- expansive matrix --- (mixed-norm) Hardy space --- molecule --- Calderón–Zygmund operator --- real interpolation --- besov space --- meyer wavelet --- Euclidean space --- cube --- congruent cube --- BMO --- JNp --- (localized) John–Nirenberg–Campanato space --- Riesz–Morrey space --- vanishing John–Nirenberg space --- duality --- commutator --- commutators --- Riesz potential --- homogeneous group --- space of homogeneous type --- paraproduct --- T(1) theorem --- hardy space --- bilinear estimate --- Hajłasz–Sobolev space --- Hajłasz–Besov space --- Hajłasz–Triebel–Lizorkin space --- generalized smoothness --- Lebesgue point --- capacity --- pointwise multipliers --- Morrey spaces --- block spaces --- convexification --- Calderón operator --- Hardy’s inequality --- variable Lebesgue space --- local Morrey space --- local block space --- extrapolation --- anisotropy --- Hardy space --- continuous ellipsoid cover --- maximal function --- anisotropic log-potential --- optimal polynomial inequality --- annulus body --- dual log-mixed volume --- Sobolev spaces --- compact manifolds --- tensor bundles --- differential operators --- Triebel–Lizorkin space --- Hardy inequality --- uniform domain --- fractional Laplacian --- Schrödinger equation --- Morrey space --- Dirichlet problem --- metric measure space


Book
Hardy spaces on homogeneous groups
Authors: ---
ISBN: 0691222452 Year: 1982 Publisher: Princeton, New Jersey : Princeton University Press : University of Tokyo Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The object of this monograph is to give an exposition of the real-variable theory of Hardy spaces (HP spaces). This theory has attracted considerable attention in recent years because it led to a better understanding in Rn of such related topics as singular integrals, multiplier operators, maximal functions, and real-variable methods generally. Because of its fruitful development, a systematic exposition of some of the main parts of the theory is now desirable. In addition to this exposition, these notes contain a recasting of the theory in the more general setting where the underlying Rn is replaced by a homogeneous group.The justification for this wider scope comes from two sources: 1) the theory of semi-simple Lie groups and symmetric spaces, where such homogeneous groups arise naturally as "boundaries," and 2) certain classes of non-elliptic differential equations (in particular those connected with several complex variables), where the model cases occur on homogeneous groups. The example which has been most widely studied in recent years is that of the Heisenberg group.

Prospects in mathematics
Authors: --- ---
ISBN: 0691080941 9780691080949 1400881692 Year: 1971 Volume: 70 Publisher: Princeton

Loading...
Export citation

Choose an application

Bookmark

Abstract

Five papers by distinguished American and European mathematicians describe some current trends in mathematics in the perspective of the recent past and in terms of expectations for the future. Among the subjects discussed are algebraic groups, quadratic forms, topological aspects of global analysis, variants of the index theorem, and partial differential equations.

Keywords

Mathematics --- Mathématiques --- Congresses --- Congrès --- 51 --- -Math --- Science --- Congresses. --- -Mathematics --- 51 Mathematics --- -51 Mathematics --- Math --- Mathématiques --- Congrès --- A priori estimate. --- Addition. --- Additive group. --- Affine space. --- Algebraic geometry. --- Algebraic group. --- Atiyah–Singer index theorem. --- Bernoulli number. --- Boundary value problem. --- Bounded operator. --- C*-algebra. --- Canonical transformation. --- Cauchy problem. --- Characteristic class. --- Clifford algebra. --- Coefficient. --- Cohomology. --- Commutative property. --- Commutative ring. --- Complex manifold. --- Complex number. --- Complex vector bundle. --- Dedekind sum. --- Degenerate bilinear form. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential operator. --- Dimension (vector space). --- Ellipse. --- Elliptic operator. --- Equation. --- Euler characteristic. --- Euler number. --- Existence theorem. --- Exotic sphere. --- Finite difference. --- Finite group. --- Fourier integral operator. --- Fourier transform. --- Fourier. --- Fredholm operator. --- Hardy space. --- Hilbert space. --- Holomorphic vector bundle. --- Homogeneous coordinates. --- Homomorphism. --- Homotopy. --- Hyperbolic partial differential equation. --- Identity component. --- Integer. --- Integral transform. --- Isomorphism class. --- John Milnor. --- K-theory. --- Lebesgue measure. --- Line bundle. --- Local ring. --- Mathematics. --- Maximal ideal. --- Modular form. --- Module (mathematics). --- Monoid. --- Normal bundle. --- Number theory. --- Open set. --- Parametrix. --- Parity (mathematics). --- Partial differential equation. --- Piecewise linear manifold. --- Poisson bracket. --- Polynomial ring. --- Polynomial. --- Prime number. --- Principal part. --- Projective space. --- Pseudo-differential operator. --- Quadratic form. --- Rational variety. --- Real number. --- Reciprocity law. --- Resolution of singularities. --- Riemann–Roch theorem. --- Shift operator. --- Simply connected space. --- Special case. --- Square-integrable function. --- Subalgebra. --- Submanifold. --- Support (mathematics). --- Surjective function. --- Symmetric bilinear form. --- Symplectic vector space. --- Tangent space. --- Theorem. --- Topology. --- Variable (mathematics). --- Vector bundle. --- Vector space. --- Winding number. --- Mathematics - Congresses

Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals.
Author:
ISBN: 0691032165 140088392X 9780691032160 Year: 1993 Volume: 43 Publisher: New Jersey Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, Lsup estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.

Keywords

Harmonic analysis. Fourier analysis --- Harmonic analysis --- Analyse harmonique --- Harmonic analysis. --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Groupe de Heisenberg. --- Addition. --- Analytic function. --- Asymptote. --- Asymptotic analysis. --- Asymptotic expansion. --- Asymptotic formula. --- Automorphism. --- Axiom. --- Banach space. --- Bessel function. --- Big O notation. --- Bilinear form. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded mean oscillation. --- Bounded operator. --- Boundedness. --- Cancellation property. --- Cauchy's integral theorem. --- Cauchy–Riemann equations. --- Characteristic polynomial. --- Characterization (mathematics). --- Commutative property. --- Commutator. --- Complex analysis. --- Convolution. --- Differential equation. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Dirac delta function. --- Dirichlet problem. --- Elliptic operator. --- Existential quantification. --- Fatou's theorem. --- Fourier analysis. --- Fourier integral operator. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fubini's theorem. --- Function (mathematics). --- Fundamental solution. --- Gaussian curvature. --- Hardy space. --- Harmonic function. --- Heisenberg group. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Hölder's inequality. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Lagrangian (field theory). --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Line segment. --- Linear map. --- Lipschitz continuity. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Martingale (probability theory). --- Mathematical induction. --- Maximal function. --- Meromorphic function. --- Multiplication operator. --- Nilpotent Lie algebra. --- Norm (mathematics). --- Number theory. --- Operator theory. --- Order of integration (calculus). --- Orthogonality. --- Oscillatory integral. --- Poisson summation formula. --- Projection (linear algebra). --- Pseudo-differential operator. --- Pseudoconvexity. --- Rectangle. --- Riesz transform. --- Several complex variables. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Spectral theory. --- Square (algebra). --- Stochastic differential equation. --- Subharmonic function. --- Submanifold. --- Summation. --- Support (mathematics). --- Theorem. --- Translational symmetry. --- Uniqueness theorem. --- Variable (mathematics). --- Vector field. --- Fourier, Analyse de --- Fourier, Opérateurs intégraux de

Beijing Lectures in Harmonic Analysis. (AM-112), Volume 112
Author:
ISBN: 0691084181 069108419X 1400882095 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Based on seven lecture series given by leading experts at a summer school at Peking University, in Beijing, in 1984. this book surveys recent developments in the areas of harmonic analysis most closely related to the theory of singular integrals, real-variable methods, and applications to several complex variables and partial differential equations. The different lecture series are closely interrelated; each contains a substantial amount of background material, as well as new results not previously published. The contributors to the volume are R. R. Coifman and Yves Meyer, Robert Fcfferman,Carlos K. Kenig, Steven G. Krantz, Alexander Nagel, E. M. Stein, and Stephen Wainger.

Keywords

Harmonic analysis. --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Analytic function. --- Asymptotic formula. --- Bergman metric. --- Bernhard Riemann. --- Bessel function. --- Biholomorphism. --- Boundary value problem. --- Bounded mean oscillation. --- Bounded operator. --- Boundedness. --- Cauchy's integral formula. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Coefficient. --- Commutator. --- Complexification (Lie group). --- Continuous function. --- Convolution. --- Degeneracy (mathematics). --- Differential equation. --- Differential operator. --- Dirac delta function. --- Dirichlet problem. --- Equation. --- Estimation. --- Existence theorem. --- Existential quantification. --- Explicit formula. --- Explicit formulae (L-function). --- Fatou's theorem. --- Fourier analysis. --- Fourier integral operator. --- Fourier transform. --- Fredholm theory. --- Fubini's theorem. --- Function (mathematics). --- Functional calculus. --- Fundamental solution. --- Gaussian curvature. --- Hardy space. --- Harmonic function. --- Harmonic measure. --- Heisenberg group. --- Hilbert space. --- Hilbert transform. --- Hodge theory. --- Holomorphic function. --- Hyperbolic partial differential equation. --- Hölder's inequality. --- Infimum and supremum. --- Integration by parts. --- Interpolation theorem. --- Intersection (set theory). --- Invertible matrix. --- Isometry group. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Lp space. --- Mathematical induction. --- Mathematical physics. --- Maximal function. --- Maximum principle. --- Measure (mathematics). --- Newtonian potential. --- Non-Euclidean geometry. --- Number theory. --- Operator theory. --- Oscillatory integral. --- Parameter. --- Partial derivative. --- Partial differential equation. --- Polynomial. --- Power series. --- Product metric. --- Radon–Nikodym theorem. --- Riemannian manifold. --- Riesz representation theorem. --- Scientific notation. --- Several complex variables. --- Sign (mathematics). --- Simultaneous equations. --- Singular function. --- Singular integral. --- Sobolev space. --- Square (algebra). --- Statistical hypothesis testing. --- Stokes' theorem. --- Support (mathematics). --- Tangent space. --- Tensor product. --- Theorem. --- Trigonometric series. --- Uniformization theorem. --- Variable (mathematics). --- Vector field.


Book
Mathematical Analysis and Analytic Number Theory 2019
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume is a collection of investigations involving the theory and applications of the various tools and techniques of mathematical analysis and analytic number theory, which are remarkably widespread in many diverse areas of the mathematical, biological, physical, chemical, engineering, and statistical sciences. It contains invited and welcome original as well as review-cum-expository research articles dealing with recent and new developments on the topics of mathematical analysis and analytic number theory as well as their multidisciplinary applications.

Keywords

Research & information: general --- Mathematics & science --- subordination --- functions with positive real part --- reciprocals --- univalent functions --- starlikeness --- convexity --- close-to-convexity --- hyper-Bessel functions --- Hardy space --- distribution --- fractional Laplacian --- Riesz fractional derivative --- delta sequence --- convolution --- subordinations --- starlike functions --- convex functions --- close-to-convex functions --- cardioid domain --- Hankel determinant --- m-fold symmetric functions --- harmonic univalent functions --- with symmetric conjecture point --- integral expressions --- coefficient estimates --- distortion --- umbral methods --- harmonic numbers --- special functions --- integral representations --- laplace and other integral transforms --- analytic functions --- quasi-Hadamard --- differential operator --- closure property --- riemann zeta function --- asymptotics --- exponential sums --- multivalent functions --- q-Ruschweyh differential operator --- q-starlike functions --- circular domain --- q-Bernardi integral operator --- Bessel functions --- Appell–Bessel functions --- generating functions --- Chebyshev polynomials --- Euler sums --- Catalan’s constant --- Trigamma function --- integral representation --- closed form --- ArcTan and ArcTanh functions --- partial fractions --- Lambert series --- cotangent sum --- modular transformation --- Dedekind sum --- lemniscate of Bernoulli Hankel determinant --- determinant --- inverse --- Mersenne number --- periodic tridiagonal Toeplitz matrix --- Sherman-Morrison-Woodbury formula --- Fibonacci number --- Lucas number --- Toeplitz matrix --- Hankel matrix --- univalent function --- second Hankel determinant --- bi-close-to-convex functions --- gamma function and its extension --- Pochhammer symbol and its extensions --- hypergeometric function and its extensions --- τ-Gauss hypergeometric function and its extensions --- τ-Kummer hypergeometric function --- Fox-Wright function --- p-valent analytic function --- Hadamard product --- q-integral operator --- generalized Lupaş operators --- q analogue --- Korovkin’s type theorem --- convergence theorems --- Voronovskaya type theorem --- starlike function --- subordinate --- Janowski functions --- conic domain --- q-convex functions --- q-close-to-convex functions --- theta-function identities --- multivariable R-functions --- Jacobi’s triple-product identity --- Ramanujan’s theta functions --- q-product identities --- Euler’s pentagonal number theorem --- Rogers-Ramanujan continued fraction --- Rogers-Ramanujan identities --- combinatorial partition-theoretic identities --- Schur’s, the Göllnitz-Gordon’s and the Göllnitz’s partition identities --- Schur’s second partition theorem --- subordination --- functions with positive real part --- reciprocals --- univalent functions --- starlikeness --- convexity --- close-to-convexity --- hyper-Bessel functions --- Hardy space --- distribution --- fractional Laplacian --- Riesz fractional derivative --- delta sequence --- convolution --- subordinations --- starlike functions --- convex functions --- close-to-convex functions --- cardioid domain --- Hankel determinant --- m-fold symmetric functions --- harmonic univalent functions --- with symmetric conjecture point --- integral expressions --- coefficient estimates --- distortion --- umbral methods --- harmonic numbers --- special functions --- integral representations --- laplace and other integral transforms --- analytic functions --- quasi-Hadamard --- differential operator --- closure property --- riemann zeta function --- asymptotics --- exponential sums --- multivalent functions --- q-Ruschweyh differential operator --- q-starlike functions --- circular domain --- q-Bernardi integral operator --- Bessel functions --- Appell–Bessel functions --- generating functions --- Chebyshev polynomials --- Euler sums --- Catalan’s constant --- Trigamma function --- integral representation --- closed form --- ArcTan and ArcTanh functions --- partial fractions --- Lambert series --- cotangent sum --- modular transformation --- Dedekind sum --- lemniscate of Bernoulli Hankel determinant --- determinant --- inverse --- Mersenne number --- periodic tridiagonal Toeplitz matrix --- Sherman-Morrison-Woodbury formula --- Fibonacci number --- Lucas number --- Toeplitz matrix --- Hankel matrix --- univalent function --- second Hankel determinant --- bi-close-to-convex functions --- gamma function and its extension --- Pochhammer symbol and its extensions --- hypergeometric function and its extensions --- τ-Gauss hypergeometric function and its extensions --- τ-Kummer hypergeometric function --- Fox-Wright function --- p-valent analytic function --- Hadamard product --- q-integral operator --- generalized Lupaş operators --- q analogue --- Korovkin’s type theorem --- convergence theorems --- Voronovskaya type theorem --- starlike function --- subordinate --- Janowski functions --- conic domain --- q-convex functions --- q-close-to-convex functions --- theta-function identities --- multivariable R-functions --- Jacobi’s triple-product identity --- Ramanujan’s theta functions --- q-product identities --- Euler’s pentagonal number theorem --- Rogers-Ramanujan continued fraction --- Rogers-Ramanujan identities --- combinatorial partition-theoretic identities --- Schur’s, the Göllnitz-Gordon’s and the Göllnitz’s partition identities --- Schur’s second partition theorem

C*-algebra extensions and K-homology
Author:
ISBN: 0691082650 0691082669 1400881463 Year: 1980 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent developments in diverse areas of mathematics suggest the study of a certain class of extensions of C*-algebras. Here, Ronald Douglas uses methods from homological algebra to study this collection of extensions. He first shows that equivalence classes of the extensions of the compact metrizable space X form an abelian group Ext (X). Second, he shows that the correspondence X ⃗ Ext (X) defines a homotopy invariant covariant functor which can then be used to define a generalized homology theory. Establishing the periodicity of order two, the author shows, following Atiyah, that a concrete realization of K-homology is obtained.

Keywords

Analytical spaces --- 517.986 --- Topological algebras. Theory of infinite-dimensional representations --- Algebra, Homological. --- C*-algebras. --- K-theory. --- 517.986 Topological algebras. Theory of infinite-dimensional representations --- Algebra, Homological --- C*-algebras --- K-theory --- Algebraic topology --- Homology theory --- Algebras, C star --- Algebras, W star --- C star algebras --- W star algebras --- W*-algebras --- Banach algebras --- Homological algebra --- Algebra, Abstract --- K-théorie. --- Homologie. --- Addition. --- Affine transformation. --- Algebraic topology. --- Atiyah–Singer index theorem. --- Automorphism. --- Banach algebra. --- Bijection. --- Boundary value problem. --- Bundle map. --- C*-algebra. --- Calculation. --- Cardinal number. --- Category of abelian groups. --- Characteristic class. --- Chern class. --- Clifford algebra. --- Coefficient. --- Cohomology. --- Compact operator. --- Completely positive map. --- Contact geometry. --- Continuous function. --- Corollary. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential operator. --- Dimension (vector space). --- Dimension function. --- Dimension. --- Direct integral. --- Direct proof. --- Eigenvalues and eigenvectors. --- Equivalence class. --- Equivalence relation. --- Essential spectrum. --- Euler class. --- Exact sequence. --- Existential quantification. --- Fiber bundle. --- Finite group. --- Fredholm operator. --- Fredholm. --- Free abelian group. --- Fundamental class. --- Fundamental group. --- Hardy space. --- Hermann Weyl. --- Hilbert space. --- Homological algebra. --- Homology (mathematics). --- Homomorphism. --- Homotopy. --- Ideal (ring theory). --- Inner automorphism. --- Irreducible representation. --- K-group. --- Lebesgue space. --- Locally compact group. --- Maximal compact subgroup. --- Michael Atiyah. --- Monomorphism. --- Morphism. --- Natural number. --- Natural transformation. --- Normal operator. --- Operator algebra. --- Operator norm. --- Operator theory. --- Orthogonal group. --- Pairing. --- Piecewise linear manifold. --- Polynomial. --- Pontryagin class. --- Positive and negative parts. --- Positive map. --- Pseudo-differential operator. --- Quaternion. --- Quotient algebra. --- Self-adjoint operator. --- Self-adjoint. --- Simply connected space. --- Smooth structure. --- Special case. --- Stein manifold. --- Strong topology. --- Subalgebra. --- Subgroup. --- Subset. --- Summation. --- Tangent bundle. --- Theorem. --- Todd class. --- Topology. --- Torsion subgroup. --- Unitary operator. --- Universal coefficient theorem. --- Variable (mathematics). --- Von Neumann algebra. --- Homology theory. --- Homologie --- K-théorie --- C etoile-algebres


Book
Essays on Fourier analysis in honor of Elias M. Stein
Authors: --- ---
ISBN: 0691632944 1400852943 0691086559 1306988802 0691603650 9781400852949 9780691603650 9780691632940 Year: 1995 Publisher: Princeton (N.J.): Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains the lectures presented at a conference held at Princeton University in May 1991 in honor of Elias M. Stein's sixtieth birthday. The lectures deal with Fourier analysis and its applications. The contributors to the volume are W. Beckner, A. Boggess, J. Bourgain, A. Carbery, M. Christ, R. R. Coifman, S. Dobyinsky, C. Fefferman, R. Fefferman, Y. Han, D. Jerison, P. W. Jones, C. Kenig, Y. Meyer, A. Nagel, D. H. Phong, J. Vance, S. Wainger, D. Watson, G. Weiss, V. Wickerhauser, and T. H. Wolff.The topics of the lectures are: conformally invariant inequalities, oscillatory integrals, analytic hypoellipticity, wavelets, the work of E. M. Stein, elliptic non-smooth PDE, nodal sets of eigenfunctions, removable sets for Sobolev spaces in the plane, nonlinear dispersive equations, bilinear operators and renormalization, holomorphic functions on wedges, singular Radon and related transforms, Hilbert transforms and maximal functions on curves, Besov and related function spaces on spaces of homogeneous type, and counterexamples with harmonic gradients in Euclidean space.Originally published in 1995.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Fourier analysis --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Congresses --- Analysis, Fourier --- -Analysis, Fourier --- -Theory of the Fourier integral --- -517.518.5 Theory of the Fourier integral --- 517.518.5 --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- Mathematical analysis --- Analytic function. --- Banach fixed-point theorem. --- Bessel function. --- Blaschke product. --- Boundary value problem. --- Bounded operator. --- Cauchy–Riemann equations. --- Coefficient. --- Commutative property. --- Convolution. --- Degeneracy (mathematics). --- Differential equation. --- Differential geometry. --- Differential operator. --- Dirichlet problem. --- Distribution (mathematics). --- Eigenvalues and eigenvectors. --- Elias M. Stein. --- Elliptic integral. --- Elliptic operator. --- Equation. --- Ergodic theory. --- Error analysis (mathematics). --- Estimation. --- Existential quantification. --- Fourier analysis. --- Fourier integral operator. --- Fourier series. --- Fourier transform. --- Fundamental matrix (linear differential equation). --- Fundamental solution. --- Geometry. --- Green's function. --- Haar measure. --- Hardy space. --- Hardy–Littlewood maximal function. --- Harmonic analysis. --- Harmonic function. --- Harmonic measure. --- Hausdorff dimension. --- Heisenberg group. --- Hermitian matrix. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Hopf lemma. --- Hyperbolic partial differential equation. --- Integral geometry. --- Integral transform. --- Julia set. --- Korteweg–de Vries equation. --- Lagrangian (field theory). --- Lebesgue differentiation theorem. --- Lebesgue measure. --- Lie algebra. --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Mandelbrot set. --- Martingale (probability theory). --- Mathematical analysis. --- Maximal function. --- Measurable Riemann mapping theorem. --- Minkowski space. --- Misiurewicz point. --- Morera's theorem. --- Möbius transformation. --- Nilpotent group. --- Non-Euclidean geometry. --- Numerical analysis. --- Nyquist–Shannon sampling theorem. --- Ordinary differential equation. --- Orthonormal basis. --- Orthonormal frame. --- Oscillatory integral. --- Partial differential equation. --- Plurisubharmonic function. --- Pseudo-Riemannian manifold. --- Pseudo-differential operator. --- Pythagorean theorem. --- Radon transform. --- Regularity theorem. --- Representation theory. --- Riemannian manifold. --- Riesz representation theorem. --- Riesz transform. --- Schrödinger equation. --- Schwartz kernel theorem. --- Sign (mathematics). --- Simultaneous equations. --- Singular integral. --- Sobolev inequality. --- Sobolev space. --- Special case. --- Symmetrization. --- Theorem. --- Trigonometric series. --- Uniqueness theorem. --- Variable (mathematics). --- Variational inequality. --- Analyse harmonique

Listing 1 - 10 of 13 << page
of 2
>>
Sort by