Narrow your search
Listing 1 - 2 of 2
Sort by

Dissertation
Optimisation de l'initiation de croissance de racines de Panax Ginseng en bioréacteur (Procédé "Hairy Roots)
Authors: --- --- --- --- --- et al.
Year: 2017 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Depuis plus de quatre décennies, l’ère de l’agriculture intensive a impulsé le développement de nouvelles biotechnologies in-vitro pour tenter de s’affranchir des contraintes de la culture en sol et améliorer le rendement des végétaux en métabolites secondaires d’intérêt pour les industries alimentaire, pharmaceutique et cosmétique. C’est dans ce contexte que s’est développée la technologie « hairy roots », une méthode de transformation des cellules végétales par le biais d’Agrobacterium rhizogenes, une bactérie du sol capable de transférer des fragments de son génome à la plante et lui conférer le phénotype des « racines chevelues », cultivables en milieu liquide. La société belge Green2Chem emploie à l’heure actuelle cette technologie pour cultiver des racines de ginseng (Panax ginseng), une plante panacée d’usage thérapeutique réputée dans le monde. Les performances remarquables du procédé abouti et l’ambition d’une future montée à l’échelle industrielle ont impulsé la conduite de recherches plus approfondies sur les facteurs susceptibles d’influencer la croissance racinaire, particulièrement dans la première étape qui consiste dans la multiplication de la biomasse. Un ensemble de variables ont été identifiés comme responsables potentiels d’une régulation, négative ou positive, du développement racinaire. Parmi les facteurs testés qui ont révélé un impact important sur la croissance : la variabilité des caractéristiques morphologiques et métaboliques des racines, la dose de racine inoculée et la répartition dudit inoculum. Par ailleurs, l’application de phytohormones (2,4 D, BAP, IAA et kinétine) et d’agents biocides ont révélé des effets inhibiteurs et stimulateurs fortement dépendants de la dose. La composition du milieu de culture semble également influencer la croissance dans une moindre mesure. Par ailleurs, le suivi d’une culture en conditions standard sur une période de 6 semaines a permis une meilleure compréhension du rythme de croissance et une détermination des temps de culture optimaux pour une production supérieure de biomasse et de métabolites. Trois mesures du milieu (pH, conductivité et brix)
ont été corrélées avec succès au développement racinaire et présentent un potentiel intéressant pour l’évaluation du développement des racines en temps réel. Finalement, les pistes générales dégagées sur les paramètres contrôlables en volume de production réduit et leurs gammes de performance optimales posent les bases d’une optimisationultérieure plus axée sur le dimensionnement du procédé vers l’échelle industrielle. Les contraintes majeures du scale-up ont été identifiées et on fait l’objet d’une réflexion, notamment sur base de tests de diffusion d’oxygène dans différents bioréacteurs. For more than four decades the era of intensive agriculture has stimulated the development of new in vitro biotechnologies in an attempt to overcome the constraints of soil cultivation and improve the yield of secondary metabolite of interest for pharmaceutical, food and cosmetic industries. It is in this context that the "hairy roots" technology has emerged. The method consists of a transformation of plant cells through Agrobacterium rhizogenes, a soil bacterium capable of transferring fragments of its genome to the plant and cause it to develop the « hairy root » phenotype which is cultivable in liquid medium. A Belgian company named Green2Chem currently uses this technology to grow ginseng roots (Panax ginseng), a panacea of worldwide renowned therapeutic use. The remarkable performance of the completed process and the ambition of a future industrial scale-up have led to more in-depth research into the factors likely to influence root growth, particularly in the first stage of multiplication of biomass. A set of variables have been identified as potentially responsible for a negative or positive regulation of root development. Among the factors that revealed a significant impact on growth: variability in root morphological and metabolic characteristics, inoculated root dose and distribution of inoculum in the medium. In addition, application of phytohormones (2,4 D, BAP, IAA and kinetin) and biocidal agents revealed strong dose dependent inhibitory and stimulatory effects. The composition of the culture medium also seems to influence growth to a lesser extent. Furthermore, monitoring of a standard crop over a period of 6 weeks allowed a better understanding of the growth rate and a determination of the optimum harvest time for enhanced production of biomass and metabolites. Three environmental measurements (pH, conductivity and brix) have been successfully correlated with root development and have interesting potential for evaluating root development in the bioreactors in real time. Finally, the general avenues for controllable parameters in reduced production volume and their optimal performance ranges form the basis for a further optimization focusing on the dimensioning of the process to an industrial scale. The major constraints of the scale-up have been identified and were the subject of reflection, in particular on the basis of oxygen transfer tests conducted in different bioreactors.


Book
Plant Development and Organogenesis: From Basic Principles to Applied Research
Author:
ISBN: 3039281275 3039281267 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.

Keywords

HD-Zip transcription factors --- Plant in vitro cultures --- plant breeding --- recalcitrant species --- CLV --- wounding --- semi-dwarf --- photoreceptors --- Arabidopsis thaliana --- root development --- morphogenesis --- embryogenesis --- cytokinin --- auxin conjugation --- molecular marker --- Development --- boundaries --- translational research --- proline biosynthesis --- Brassicaceae --- meristem formation --- phytohormones --- stem cells --- meristem --- cytoskeleton --- hydrogen peroxide --- ligule --- genetic improvement --- tree phase change --- Rht18 --- hairy roots --- WUS --- GRETCHEN HAGEN 3 (GH3) IAA-amido synthase group II --- photoperiod --- linkage map --- SAM --- ground tissue --- signaling --- differentiation --- protoxylem --- ambient temperature --- gibberellins --- molecular regulation --- proximodistal patterning --- wheat-rye hybrids --- RolD --- somatic cell selection --- flowering time --- plant development and organogenesis --- grass --- root --- wheat --- crop productivity --- genetic transformation --- regulatory networks --- light environment --- rol genes --- root plasticity --- morphogenic --- stem apical meristem --- auxin --- shoot meristem --- Arabidopsis --- organogenesis --- transformation --- Vasculature --- Organogenesis --- radial patterning --- plant development --- reduced height --- root apical meristem --- Asteraceae --- vernalization --- KNOX transcription factors --- locule --- plant cell and tissue culture --- Agrobacterium rhizogenes --- genes of reproductive isolation --- cell wall --- lateral root cap --- CLE --- auxin minimum --- age

Listing 1 - 2 of 2
Sort by