Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
Research & information: general --- bfast --- Mann-Kendall --- Sen's slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- bfast --- Mann-Kendall --- Sen's slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
Research & information: general --- bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope
Listing 1 - 3 of 3 |
Sort by
|