Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (6)

Listing 1 - 6 of 6
Sort by

Book
Hydrology in Water Resources Management
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of 12 papers describing the role of hydrology in water resources management. The papers can be divided s according to their area of focus as 1) modeling of hydrological processes, 2) use of modern techniques in hydrological analysis, 3) impact of human pressure and climate change on water resources, and 4) hydrometeorological extremes. Belonging to the first area is the presentation of a new Muskingum flood routing model, a new tool to perform frequency analysis of maximum precipitation of a specified duration via the so-named PMAXΤP model (Precipitation MAXimum Time (duration) Probability), modeling of interception processes, and using a rainfall-runoff GR2M model to calculate monthly runoff. For the second area, the groundwater potential was evaluated using a model of multi-influencing factors in which the parameters were optimized by using geoprocessing tools in geographical information system (GIS) in combination with satellite altimeter data and the reanalysis of hydrological data to simulate overflow transport using the Nordic Sea as an example. Presented for the third area are a water balance model for the comparison of water resources with the needs of water users, the idea of adaptive water management, impacts of climate change, and anthropogenic activities on the runoff in catchment located in the western Himalayas of Pakistan. The last area includes spatiotemporal analysis of rainfall variability with regard to drought hazard and use of the copula function to meteorologically analyze drought.

Keywords

Research & information: general --- GR2M --- inverse distance weighting --- rainfall-runoff model --- sensitivity analysis --- multi-influencing factors (MIF) --- vertical electrical sounding (VES) --- electrical resistivity tomography (ERT) --- groundwater resource management (GRM) --- hydro-stratigraphy --- well logs --- precipitation --- climate change --- Sen’s estimator --- Mann-Kendall --- Wadi Cheliff basin --- upper Minjiang River --- marginal distribution --- copula --- bivariate joint distribution --- return period --- rainfall partitioning --- dry tropical forest --- gash model --- interception modelling --- Nordic Sea --- overflow flux --- barotropic pressure --- baroclinic pressure --- annual maximum precipitation --- peaks-over-threshold methods --- statistical analysis --- maximum precipitation frequency analysis --- gamma --- Weibull --- log-gamma --- log-normal --- Gumbel distributions --- nonparametric tests --- drought --- trends --- SPI --- mina basin --- Algeria --- Kunhar River Basin --- streamflow --- trend analysis --- Soil and Water Assessment Tool (SWAT) --- anthropogenic impacts --- hydrologic flood routing --- Muskingum flood routing model --- meta-heuristic optimization --- self-adaptive vision correction algorithm --- Adaptive Water Management --- stakeholder engagement --- legislation --- survey --- uncertainty in water management --- water requirements of aquatic and water dependent ecosystems --- water resources allocation --- water balance model


Book
Hydrology in Water Resources Management
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of 12 papers describing the role of hydrology in water resources management. The papers can be divided s according to their area of focus as 1) modeling of hydrological processes, 2) use of modern techniques in hydrological analysis, 3) impact of human pressure and climate change on water resources, and 4) hydrometeorological extremes. Belonging to the first area is the presentation of a new Muskingum flood routing model, a new tool to perform frequency analysis of maximum precipitation of a specified duration via the so-named PMAXΤP model (Precipitation MAXimum Time (duration) Probability), modeling of interception processes, and using a rainfall-runoff GR2M model to calculate monthly runoff. For the second area, the groundwater potential was evaluated using a model of multi-influencing factors in which the parameters were optimized by using geoprocessing tools in geographical information system (GIS) in combination with satellite altimeter data and the reanalysis of hydrological data to simulate overflow transport using the Nordic Sea as an example. Presented for the third area are a water balance model for the comparison of water resources with the needs of water users, the idea of adaptive water management, impacts of climate change, and anthropogenic activities on the runoff in catchment located in the western Himalayas of Pakistan. The last area includes spatiotemporal analysis of rainfall variability with regard to drought hazard and use of the copula function to meteorologically analyze drought.


Book
Hydrology in Water Resources Management
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of 12 papers describing the role of hydrology in water resources management. The papers can be divided s according to their area of focus as 1) modeling of hydrological processes, 2) use of modern techniques in hydrological analysis, 3) impact of human pressure and climate change on water resources, and 4) hydrometeorological extremes. Belonging to the first area is the presentation of a new Muskingum flood routing model, a new tool to perform frequency analysis of maximum precipitation of a specified duration via the so-named PMAXΤP model (Precipitation MAXimum Time (duration) Probability), modeling of interception processes, and using a rainfall-runoff GR2M model to calculate monthly runoff. For the second area, the groundwater potential was evaluated using a model of multi-influencing factors in which the parameters were optimized by using geoprocessing tools in geographical information system (GIS) in combination with satellite altimeter data and the reanalysis of hydrological data to simulate overflow transport using the Nordic Sea as an example. Presented for the third area are a water balance model for the comparison of water resources with the needs of water users, the idea of adaptive water management, impacts of climate change, and anthropogenic activities on the runoff in catchment located in the western Himalayas of Pakistan. The last area includes spatiotemporal analysis of rainfall variability with regard to drought hazard and use of the copula function to meteorologically analyze drought.

Keywords

Research & information: general --- GR2M --- inverse distance weighting --- rainfall-runoff model --- sensitivity analysis --- multi-influencing factors (MIF) --- vertical electrical sounding (VES) --- electrical resistivity tomography (ERT) --- groundwater resource management (GRM) --- hydro-stratigraphy --- well logs --- precipitation --- climate change --- Sen’s estimator --- Mann-Kendall --- Wadi Cheliff basin --- upper Minjiang River --- marginal distribution --- copula --- bivariate joint distribution --- return period --- rainfall partitioning --- dry tropical forest --- gash model --- interception modelling --- Nordic Sea --- overflow flux --- barotropic pressure --- baroclinic pressure --- annual maximum precipitation --- peaks-over-threshold methods --- statistical analysis --- maximum precipitation frequency analysis --- gamma --- Weibull --- log-gamma --- log-normal --- Gumbel distributions --- nonparametric tests --- drought --- trends --- SPI --- mina basin --- Algeria --- Kunhar River Basin --- streamflow --- trend analysis --- Soil and Water Assessment Tool (SWAT) --- anthropogenic impacts --- hydrologic flood routing --- Muskingum flood routing model --- meta-heuristic optimization --- self-adaptive vision correction algorithm --- Adaptive Water Management --- stakeholder engagement --- legislation --- survey --- uncertainty in water management --- water requirements of aquatic and water dependent ecosystems --- water resources allocation --- water balance model --- GR2M --- inverse distance weighting --- rainfall-runoff model --- sensitivity analysis --- multi-influencing factors (MIF) --- vertical electrical sounding (VES) --- electrical resistivity tomography (ERT) --- groundwater resource management (GRM) --- hydro-stratigraphy --- well logs --- precipitation --- climate change --- Sen’s estimator --- Mann-Kendall --- Wadi Cheliff basin --- upper Minjiang River --- marginal distribution --- copula --- bivariate joint distribution --- return period --- rainfall partitioning --- dry tropical forest --- gash model --- interception modelling --- Nordic Sea --- overflow flux --- barotropic pressure --- baroclinic pressure --- annual maximum precipitation --- peaks-over-threshold methods --- statistical analysis --- maximum precipitation frequency analysis --- gamma --- Weibull --- log-gamma --- log-normal --- Gumbel distributions --- nonparametric tests --- drought --- trends --- SPI --- mina basin --- Algeria --- Kunhar River Basin --- streamflow --- trend analysis --- Soil and Water Assessment Tool (SWAT) --- anthropogenic impacts --- hydrologic flood routing --- Muskingum flood routing model --- meta-heuristic optimization --- self-adaptive vision correction algorithm --- Adaptive Water Management --- stakeholder engagement --- legislation --- survey --- uncertainty in water management --- water requirements of aquatic and water dependent ecosystems --- water resources allocation --- water balance model


Book
Integrated Surface Water and Groundwater Analysis
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Comprehensive understanding of surface water and groundwater interaction is essential for effective water resources management. Groundwater and surface water are closely connected components that constantly interact with each other within the Earth’s hydrologic cycle. Many studies utilized observations to explain the surface water and groundwater interactions by carefully analyzing the behavior of surface water features (streams, lakes, reservoirs, wetlands, and estuaries) and the related aquifer environments. However, unlike visible surface water, groundwater, an invisible water resource, is not easy to measure or quantify directly. Nevertheless, demand for groundwater that is highly resilient to climate change is growing rapidly. Furthermore, groundwater is the prime source for drinking water supply and irrigation, and hence critical to global food security. Groundwater needs to be managed wisely, protected, and especially sustainably used. However, this task has become a challenge to many hydrologic systems in arid to even humid regions because of added stress caused by changing environment, climate, land use, population growth, etc. In this issue, the editors present contributions on various research areas such as the integrated surface water and groundwater analysis, sustainable management of groundwater, and the interaction between surface water and groundwater. Methodologies, strategies, case studies as well as quantitative techniques for dealing with combined surface water and groundwater management are of interest for this issue.

Keywords

Research & information: general --- Environmental economics --- groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater-surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface-groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface-ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water --- groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater-surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface-groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface-ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water


Book
Integrated Surface Water and Groundwater Analysis
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Comprehensive understanding of surface water and groundwater interaction is essential for effective water resources management. Groundwater and surface water are closely connected components that constantly interact with each other within the Earth’s hydrologic cycle. Many studies utilized observations to explain the surface water and groundwater interactions by carefully analyzing the behavior of surface water features (streams, lakes, reservoirs, wetlands, and estuaries) and the related aquifer environments. However, unlike visible surface water, groundwater, an invisible water resource, is not easy to measure or quantify directly. Nevertheless, demand for groundwater that is highly resilient to climate change is growing rapidly. Furthermore, groundwater is the prime source for drinking water supply and irrigation, and hence critical to global food security. Groundwater needs to be managed wisely, protected, and especially sustainably used. However, this task has become a challenge to many hydrologic systems in arid to even humid regions because of added stress caused by changing environment, climate, land use, population growth, etc. In this issue, the editors present contributions on various research areas such as the integrated surface water and groundwater analysis, sustainable management of groundwater, and the interaction between surface water and groundwater. Methodologies, strategies, case studies as well as quantitative techniques for dealing with combined surface water and groundwater management are of interest for this issue.

Keywords

Research & information: general --- Environmental economics --- groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater–surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface–groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface–ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water --- n/a --- groundwater-surface water interactions --- surface-groundwater interaction --- surface-ground-water interactions


Book
Integrated Surface Water and Groundwater Analysis
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Comprehensive understanding of surface water and groundwater interaction is essential for effective water resources management. Groundwater and surface water are closely connected components that constantly interact with each other within the Earth’s hydrologic cycle. Many studies utilized observations to explain the surface water and groundwater interactions by carefully analyzing the behavior of surface water features (streams, lakes, reservoirs, wetlands, and estuaries) and the related aquifer environments. However, unlike visible surface water, groundwater, an invisible water resource, is not easy to measure or quantify directly. Nevertheless, demand for groundwater that is highly resilient to climate change is growing rapidly. Furthermore, groundwater is the prime source for drinking water supply and irrigation, and hence critical to global food security. Groundwater needs to be managed wisely, protected, and especially sustainably used. However, this task has become a challenge to many hydrologic systems in arid to even humid regions because of added stress caused by changing environment, climate, land use, population growth, etc. In this issue, the editors present contributions on various research areas such as the integrated surface water and groundwater analysis, sustainable management of groundwater, and the interaction between surface water and groundwater. Methodologies, strategies, case studies as well as quantitative techniques for dealing with combined surface water and groundwater management are of interest for this issue.

Keywords

groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater–surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface–groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface–ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water --- n/a --- groundwater-surface water interactions --- surface-groundwater interaction --- surface-ground-water interactions

Listing 1 - 6 of 6
Sort by