Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management.
Research & information: general --- groundwater --- artificial intelligence --- hydrologic model --- groundwater level prediction --- machine learning --- principal component analysis --- spatiotemporal variation --- uncertainty analysis --- hydroinformatics --- support vector machine --- big data --- artificial neural network --- nitrogen compound --- nitrogen prediction --- prediction models --- neural network --- non-linear modeling --- PACF --- WANN --- SVM-LF --- SVM-RF --- Govindpur --- streamflow forecasting --- Bayesian model averaging --- multivariate adaptive regression spline --- M5 model tree --- Kernel extreme learning machines --- South Korea --- uncertainty --- sustainability --- prediction intervals --- ungauged basin --- streamflow simulation --- satellite precipitation --- atmospheric reanalysis --- ensemble modeling --- additive regression --- bagging --- dagging --- random subspace --- rotation forest --- flood routing --- Muskingum method --- extension principle --- calibration --- fuzzy sets and systems --- particle swarm optimization --- EEFlux --- irrigation performance --- CWP --- water conservation --- NDVI --- water resources --- Daymet V3 --- Google Earth Engine --- improved extreme learning machine (IELM) --- sensitivity analysis --- shortwave radiation flux density --- sustainable development --- groundwater --- artificial intelligence --- hydrologic model --- groundwater level prediction --- machine learning --- principal component analysis --- spatiotemporal variation --- uncertainty analysis --- hydroinformatics --- support vector machine --- big data --- artificial neural network --- nitrogen compound --- nitrogen prediction --- prediction models --- neural network --- non-linear modeling --- PACF --- WANN --- SVM-LF --- SVM-RF --- Govindpur --- streamflow forecasting --- Bayesian model averaging --- multivariate adaptive regression spline --- M5 model tree --- Kernel extreme learning machines --- South Korea --- uncertainty --- sustainability --- prediction intervals --- ungauged basin --- streamflow simulation --- satellite precipitation --- atmospheric reanalysis --- ensemble modeling --- additive regression --- bagging --- dagging --- random subspace --- rotation forest --- flood routing --- Muskingum method --- extension principle --- calibration --- fuzzy sets and systems --- particle swarm optimization --- EEFlux --- irrigation performance --- CWP --- water conservation --- NDVI --- water resources --- Daymet V3 --- Google Earth Engine --- improved extreme learning machine (IELM) --- sensitivity analysis --- shortwave radiation flux density --- sustainable development
Choose an application
The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management.
Research & information: general --- groundwater --- artificial intelligence --- hydrologic model --- groundwater level prediction --- machine learning --- principal component analysis --- spatiotemporal variation --- uncertainty analysis --- hydroinformatics --- support vector machine --- big data --- artificial neural network --- nitrogen compound --- nitrogen prediction --- prediction models --- neural network --- non-linear modeling --- PACF --- WANN --- SVM-LF --- SVM-RF --- Govindpur --- streamflow forecasting --- Bayesian model averaging --- multivariate adaptive regression spline --- M5 model tree --- Kernel extreme learning machines --- South Korea --- uncertainty --- sustainability --- prediction intervals --- ungauged basin --- streamflow simulation --- satellite precipitation --- atmospheric reanalysis --- ensemble modeling --- additive regression --- bagging --- dagging --- random subspace --- rotation forest --- flood routing --- Muskingum method --- extension principle --- calibration --- fuzzy sets and systems --- particle swarm optimization --- EEFlux --- irrigation performance --- CWP --- water conservation --- NDVI --- water resources --- Daymet V3 --- Google Earth Engine --- improved extreme learning machine (IELM) --- sensitivity analysis --- shortwave radiation flux density --- sustainable development --- n/a
Choose an application
The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management.
groundwater --- artificial intelligence --- hydrologic model --- groundwater level prediction --- machine learning --- principal component analysis --- spatiotemporal variation --- uncertainty analysis --- hydroinformatics --- support vector machine --- big data --- artificial neural network --- nitrogen compound --- nitrogen prediction --- prediction models --- neural network --- non-linear modeling --- PACF --- WANN --- SVM-LF --- SVM-RF --- Govindpur --- streamflow forecasting --- Bayesian model averaging --- multivariate adaptive regression spline --- M5 model tree --- Kernel extreme learning machines --- South Korea --- uncertainty --- sustainability --- prediction intervals --- ungauged basin --- streamflow simulation --- satellite precipitation --- atmospheric reanalysis --- ensemble modeling --- additive regression --- bagging --- dagging --- random subspace --- rotation forest --- flood routing --- Muskingum method --- extension principle --- calibration --- fuzzy sets and systems --- particle swarm optimization --- EEFlux --- irrigation performance --- CWP --- water conservation --- NDVI --- water resources --- Daymet V3 --- Google Earth Engine --- improved extreme learning machine (IELM) --- sensitivity analysis --- shortwave radiation flux density --- sustainable development --- n/a
Choose an application
Comprehensive understanding of surface water and groundwater interaction is essential for effective water resources management. Groundwater and surface water are closely connected components that constantly interact with each other within the Earth’s hydrologic cycle. Many studies utilized observations to explain the surface water and groundwater interactions by carefully analyzing the behavior of surface water features (streams, lakes, reservoirs, wetlands, and estuaries) and the related aquifer environments. However, unlike visible surface water, groundwater, an invisible water resource, is not easy to measure or quantify directly. Nevertheless, demand for groundwater that is highly resilient to climate change is growing rapidly. Furthermore, groundwater is the prime source for drinking water supply and irrigation, and hence critical to global food security. Groundwater needs to be managed wisely, protected, and especially sustainably used. However, this task has become a challenge to many hydrologic systems in arid to even humid regions because of added stress caused by changing environment, climate, land use, population growth, etc. In this issue, the editors present contributions on various research areas such as the integrated surface water and groundwater analysis, sustainable management of groundwater, and the interaction between surface water and groundwater. Methodologies, strategies, case studies as well as quantitative techniques for dealing with combined surface water and groundwater management are of interest for this issue.
Research & information: general --- Environmental economics --- groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater-surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface-groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface-ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water --- groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater-surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface-groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface-ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water
Choose an application
Comprehensive understanding of surface water and groundwater interaction is essential for effective water resources management. Groundwater and surface water are closely connected components that constantly interact with each other within the Earth’s hydrologic cycle. Many studies utilized observations to explain the surface water and groundwater interactions by carefully analyzing the behavior of surface water features (streams, lakes, reservoirs, wetlands, and estuaries) and the related aquifer environments. However, unlike visible surface water, groundwater, an invisible water resource, is not easy to measure or quantify directly. Nevertheless, demand for groundwater that is highly resilient to climate change is growing rapidly. Furthermore, groundwater is the prime source for drinking water supply and irrigation, and hence critical to global food security. Groundwater needs to be managed wisely, protected, and especially sustainably used. However, this task has become a challenge to many hydrologic systems in arid to even humid regions because of added stress caused by changing environment, climate, land use, population growth, etc. In this issue, the editors present contributions on various research areas such as the integrated surface water and groundwater analysis, sustainable management of groundwater, and the interaction between surface water and groundwater. Methodologies, strategies, case studies as well as quantitative techniques for dealing with combined surface water and groundwater management are of interest for this issue.
Research & information: general --- Environmental economics --- groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater–surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface–groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface–ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water --- n/a --- groundwater-surface water interactions --- surface-groundwater interaction --- surface-ground-water interactions
Choose an application
Comprehensive understanding of surface water and groundwater interaction is essential for effective water resources management. Groundwater and surface water are closely connected components that constantly interact with each other within the Earth’s hydrologic cycle. Many studies utilized observations to explain the surface water and groundwater interactions by carefully analyzing the behavior of surface water features (streams, lakes, reservoirs, wetlands, and estuaries) and the related aquifer environments. However, unlike visible surface water, groundwater, an invisible water resource, is not easy to measure or quantify directly. Nevertheless, demand for groundwater that is highly resilient to climate change is growing rapidly. Furthermore, groundwater is the prime source for drinking water supply and irrigation, and hence critical to global food security. Groundwater needs to be managed wisely, protected, and especially sustainably used. However, this task has become a challenge to many hydrologic systems in arid to even humid regions because of added stress caused by changing environment, climate, land use, population growth, etc. In this issue, the editors present contributions on various research areas such as the integrated surface water and groundwater analysis, sustainable management of groundwater, and the interaction between surface water and groundwater. Methodologies, strategies, case studies as well as quantitative techniques for dealing with combined surface water and groundwater management are of interest for this issue.
groundwater-surface water interaction --- analytical --- numerical --- FEMME --- STRIVE --- MODFLOW --- Long Short-Term Memory --- groundwater level prediction --- groundwater withdrawal impact --- groundwater level variation --- machine learning --- integrated surface water and groundwater analysis --- climate change --- hydraulic fracturing --- construction of well pads --- MIKE-SHE --- MIKE-11 --- northwestern Alberta --- SWAT+ --- groundwater --- modeling --- groundwater–surface water interactions --- rainwater harvesting --- climate variability --- small island developing states --- improved water governance --- national sustainable development plans --- SDG6 --- community participation --- drinking water supply --- water supply scheme --- surface water/groundwater interactions --- managed aquifer recharge --- induced riverbank filtration --- groundwater resource management --- water curtain cultivation --- surface–groundwater interaction --- water budget analysis --- Nera River --- carbonate aquifer --- recession curves --- seismic sequence --- permafrost hydrology --- Russian Arctic --- water tracks --- hydrological connectivity --- stable water isotopes --- dissolved organic carbon --- electrical resistivity tomography --- taliks --- flood --- surface and groundwater interactions --- HEIFLOW --- Managed Aquifer Recharge --- groundwater tracer --- heat transport --- surface–ground-water interactions --- infiltration basin --- groundwater hydrology --- young water fraction --- global meteoric water line --- northern Italian Apennines --- stakeholder participation --- surface water-groundwater interaction --- scenario modelling --- integrated water management --- agent-based modelling --- SimCopiapo --- water balance --- water table fluctuation method --- irrigated pastures --- deep percolation --- aquifer recharge --- clay soils --- flood irrigation --- water management --- surface water --- n/a --- groundwater-surface water interactions --- surface-groundwater interaction --- surface-ground-water interactions
Listing 1 - 6 of 6 |
Sort by
|