Listing 1 - 10 of 57 | << page >> |
Sort by
|
Choose an application
Grain size --- Metals --- Investigations
Choose an application
Due to their high energy conversion efficiencies and low emissions, Solid Oxide Fuel Cells (SOFCs) show promise as a replacement for combustion-based electrical generators at all sizes. Further increase of SOFC efficiency can be achieved by microstructural optimization of the oxygen-ion conducting electrolyte and the mixed ionic-electronic conducting cathode. By application of nanoscaled thin films, the exceptionally high efficiency allows the realization of mobile SOFCs.
grain-size effect --- nanoscaled thin film --- solid oxide fuel cell (SOFC) --- cathode --- electrolyte
Choose an application
The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.
Choose an application
RHEOLOGICAL PROPERTIES --- CONCRETES --- THIXOTROPY --- VISCOSITY --- SHEAR STRENGTH --- SHEAR TESTS --- MORTARS MATERIAL --- DILATANCY --- PLASTIC PROPERTIES --- VIBRATORY COMPACTING --- GRAIN SIZE --- AGGREGATES --- NON NEWTONIAN FLUIDS --- FROST PROTECTION --- MECHANICAL PROPERTIES
Choose an application
Solid state physics --- Ceramics --- Céramique industrielle --- Analysis --- Analyse --- -Ceramic technology --- Industrial ceramics --- Keramics --- Building materials --- Chemistry, Technical --- Clay --- -Analysis --- Céramique industrielle --- Ceramic technology --- MICROSTRUCTURE --- GRAIN SIZE --- POWDERS --- CERAMICS --- Monograph --- Microstructure. --- Powders. --- Ceramics. --- Powder --- Bulk solids --- Crystals --- Materials --- Matter --- Morphology --- Micromechanics --- Stereology --- Constitution --- Ceramics - Analysis
Choose an application
The collection of papers presented in this book illustrates the recent progress made in varved sediment research and highlights the large variety of methodological approaches and research directions applied. The contributions cover monitoring of modern sediment fluxes using sediment traps; geochronological and sedimentological analyses of annually laminated lacustrine sediments or varves; and multiproxy investigations, including geochemical and biological proxies as well as spatiotemporal analyses based on multicore studies supported by satellite images and X-ray computed tomography (CT). The scientific issues discuss the influences of hydrological and climatological phenomena on short-term changes in sediment flux, the relationships between biogeochemical (limnological) processes in the water column and the formation of varves, the preservation of environmental signals in varved sediments, and possibilities of synchronizing varved records with other high-resolution environmental archives such as tree rings.
environmental monitoring --- varve microfacies --- mast --- dropstones --- sediment flux --- X-ray CT --- meromixis --- flux rate --- end-members --- endogenic varves --- ultra-high resolution --- dating --- oxygen deficiency --- pollen traps --- hypoxia --- annually laminated lake sediments --- geochronology --- pigments --- eutrophication --- snow avalanche --- sedimentation --- calcite precipitation --- catchment dynamics --- lake sediments --- freshwater GDGTs --- varves --- grain-size --- varve --- tree-rings --- pollen analysis --- long-term ecology --- hypolimnetic hypoxia oscillations --- novel technology methodology
Choose an application
During the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the optimisation of comminution, flotation, mineral concentration and metallurgical processes in the mining industry by generating quantified data, is still the major application field of SEM automated mineralogy. However, there is interesting potential beyond these classical fields of geometallurgy and metal ore fingerprinting. Slags, pottery and artefacts can be studied in an archeological context for the recognition of provenance and trade pathways; soil, and solid particles of all kinds, are objects in forensic science. SEM automated mineralogy allows new insight in the fields of process chemistry and recycling technology.
Research & information: general --- Zr-REE-Nb deposits --- alkaline rocks --- automated mineralogy --- Khalzan Buregtei --- automated scanning electron microscopy --- QEMSCAN® --- trace minerals --- gold --- REE minerals --- REE carbonatite ore --- comminution --- multi-stage flotation --- EDX spectra --- MLA --- mineral processing --- iron ore --- Kiruna --- Raman spectroscopy --- magnetite --- hematite --- scanning electron microscopy (SEM) --- automated quantitative analysis (AQM) --- spectrum quantification --- signal deconvolution --- fault gouge --- 200-nm resolution --- grain size distribution --- Ikkattup nunaa --- mineral maps --- submicrometer --- automated quantitative mineralogy (AQM) --- scanning electron microscopy --- ZEISS Mineralogic --- Fiskenæsset complex --- Feret angle --- element concentration map --- visualization --- mineral association --- bulk composition --- grain size --- waste of electrical and electronic equipment --- X-ray computed tomography --- mineral liberation analysis --- indicator minerals --- heavy mineral concentrates --- till sampling --- VMS --- Izok Lake --- sewage sludge ashes (SSA) --- phosphate --- recycling --- recovery --- SEM-automated mineralogy --- mineral liberation analysis (MLA) --- scanning electron microscope --- raw materials --- resource technology --- granular material --- petrology --- n/a
Choose an application
During the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the optimisation of comminution, flotation, mineral concentration and metallurgical processes in the mining industry by generating quantified data, is still the major application field of SEM automated mineralogy. However, there is interesting potential beyond these classical fields of geometallurgy and metal ore fingerprinting. Slags, pottery and artefacts can be studied in an archeological context for the recognition of provenance and trade pathways; soil, and solid particles of all kinds, are objects in forensic science. SEM automated mineralogy allows new insight in the fields of process chemistry and recycling technology.
Zr-REE-Nb deposits --- alkaline rocks --- automated mineralogy --- Khalzan Buregtei --- automated scanning electron microscopy --- QEMSCAN® --- trace minerals --- gold --- REE minerals --- REE carbonatite ore --- comminution --- multi-stage flotation --- EDX spectra --- MLA --- mineral processing --- iron ore --- Kiruna --- Raman spectroscopy --- magnetite --- hematite --- scanning electron microscopy (SEM) --- automated quantitative analysis (AQM) --- spectrum quantification --- signal deconvolution --- fault gouge --- 200-nm resolution --- grain size distribution --- Ikkattup nunaa --- mineral maps --- submicrometer --- automated quantitative mineralogy (AQM) --- scanning electron microscopy --- ZEISS Mineralogic --- Fiskenæsset complex --- Feret angle --- element concentration map --- visualization --- mineral association --- bulk composition --- grain size --- waste of electrical and electronic equipment --- X-ray computed tomography --- mineral liberation analysis --- indicator minerals --- heavy mineral concentrates --- till sampling --- VMS --- Izok Lake --- sewage sludge ashes (SSA) --- phosphate --- recycling --- recovery --- SEM-automated mineralogy --- mineral liberation analysis (MLA) --- scanning electron microscope --- raw materials --- resource technology --- granular material --- petrology --- n/a
Choose an application
During the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the optimisation of comminution, flotation, mineral concentration and metallurgical processes in the mining industry by generating quantified data, is still the major application field of SEM automated mineralogy. However, there is interesting potential beyond these classical fields of geometallurgy and metal ore fingerprinting. Slags, pottery and artefacts can be studied in an archeological context for the recognition of provenance and trade pathways; soil, and solid particles of all kinds, are objects in forensic science. SEM automated mineralogy allows new insight in the fields of process chemistry and recycling technology.
Research & information: general --- Zr-REE-Nb deposits --- alkaline rocks --- automated mineralogy --- Khalzan Buregtei --- automated scanning electron microscopy --- QEMSCAN® --- trace minerals --- gold --- REE minerals --- REE carbonatite ore --- comminution --- multi-stage flotation --- EDX spectra --- MLA --- mineral processing --- iron ore --- Kiruna --- Raman spectroscopy --- magnetite --- hematite --- scanning electron microscopy (SEM) --- automated quantitative analysis (AQM) --- spectrum quantification --- signal deconvolution --- fault gouge --- 200-nm resolution --- grain size distribution --- Ikkattup nunaa --- mineral maps --- submicrometer --- automated quantitative mineralogy (AQM) --- scanning electron microscopy --- ZEISS Mineralogic --- Fiskenæsset complex --- Feret angle --- element concentration map --- visualization --- mineral association --- bulk composition --- grain size --- waste of electrical and electronic equipment --- X-ray computed tomography --- mineral liberation analysis --- indicator minerals --- heavy mineral concentrates --- till sampling --- VMS --- Izok Lake --- sewage sludge ashes (SSA) --- phosphate --- recycling --- recovery --- SEM-automated mineralogy --- mineral liberation analysis (MLA) --- scanning electron microscope --- raw materials --- resource technology --- granular material --- petrology
Choose an application
Rivers are an excellent witness of the dynamics affecting Earth’s surface due to their sedimentary products and morphological expression, which may be considered as fluvial archives. Until now, the focus has been on evaluating the general impact of individual external factors. However, the importance of the specific environmental characteristics of these factors has become increasingly recognized, as highlighted in recent case studies. For example, the effects of regional climate, differentiated topography and vegetation, and frozen ground appear to play an essential role in the evolution of the fluvial system. Integration of such environmental conditions in the processes that were active within the complex fluvial system will open new perspectives in our progressive understanding of the evolution of landscape form, ecology, sediment fluxes, and hydrology of the system within the framework of the external drivers such as tectonics, general climate, and human activity. This is an appealing challenge that we wish to address in the present Special Issue under the aegis of the Fluvial Archives Group (FLAG).
n/a --- Tisa --- dikes --- OSL dating --- last glacial --- legacy sediments --- fluvial archives --- western Iberia --- fire --- river engineering --- uplift --- crustal properties --- craton --- fluvial evolution --- OSL-dating --- local conditions --- Pannonian Basin --- deforestation --- eastern Australia --- tectonic impact --- Holocene --- optically stimulated luminescence --- paleo-fluvial --- environmental change --- terrace development --- vegetation-induced sedimentary structures --- alluvial fan --- FLAG --- dams --- agriculture --- fluvial forcing --- domestication --- archaeology --- terrace --- sedimentary basins --- Anthropocene --- Late Pleistocene --- fluvial facies --- optical stimulated luminescence (OSL) dating --- OSL --- climate --- channel entrenchment --- grain-size analysis --- river terraces --- Tisza --- extrinsic controls
Listing 1 - 10 of 57 | << page >> |
Sort by
|