Listing 1 - 10 of 46 | << page >> |
Sort by
|
Choose an application
This book is a collection of 10 research articles (from 18 submissions) authored by researchers and peer reviewed by professionals in the field to address the use of sustainable composite materials in civil and architectural engineering over the course of more than 2 years. Fiber-reinforced plastic (FRP), geopolymers, and various recycled and repurposed waste materials are among the items addressed, used in a variety of applications from flame retardance to energy consumption. This book is a great resource for both academics and professionals in the field of engineering.
basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic–inorganic hybrid --- polyurethane --- sol–gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents --- n/a --- organic-inorganic hybrid --- sol-gel method
Choose an application
This book is a collection of 10 research articles (from 18 submissions) authored by researchers and peer reviewed by professionals in the field to address the use of sustainable composite materials in civil and architectural engineering over the course of more than 2 years. Fiber-reinforced plastic (FRP), geopolymers, and various recycled and repurposed waste materials are among the items addressed, used in a variety of applications from flame retardance to energy consumption. This book is a great resource for both academics and professionals in the field of engineering.
Technology: general issues --- History of engineering & technology --- basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic-inorganic hybrid --- polyurethane --- sol-gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents
Choose an application
This book is a collection of 10 research articles (from 18 submissions) authored by researchers and peer reviewed by professionals in the field to address the use of sustainable composite materials in civil and architectural engineering over the course of more than 2 years. Fiber-reinforced plastic (FRP), geopolymers, and various recycled and repurposed waste materials are among the items addressed, used in a variety of applications from flame retardance to energy consumption. This book is a great resource for both academics and professionals in the field of engineering.
Technology: general issues --- History of engineering & technology --- basic oxygen furnace slag --- autoclave test --- geopolymer technology --- expansion behavior --- recycling --- Ag/MWCNT --- EMSE --- laminated woven fabric --- PTFE film --- screen printing --- utilization --- SiC sludge --- alkaline activator solutions --- synergistic effect --- geopolymer reaction --- flame retardant --- organic–inorganic hybrid --- polyurethane --- sol–gel method --- graphene nanoplatelets --- graphene nanoplatelets/epoxy nanocomposite --- mechanical properties --- planetary centrifugal mixing --- three-roll milling --- traditional dispersal --- cement soil --- nano MgO --- carbonization process --- compressive strength --- energy dissipation --- asphalt concrete --- radiation cooling --- emissivity --- thermal conductivity --- recycled carbon fiber --- fiber-reinforced concrete --- microwave-assisted pyrolysis --- shock wave --- inorganic --- geopolymer --- heat storage --- light reflectivity --- heat flux --- sustainable cities and communities --- carbon fiber-reinforced polymer --- silane coupling agents --- n/a --- organic-inorganic hybrid --- sol-gel method
Choose an application
Improving the durability of reinforced concrete structures is a mandatory strategy to reduce the environmental impact of construction materials together with aiming to limit carbon dioxide emissions, energy consumption and natural raw materials depletion. Hence, for both new and existing concrete structures, proper protective techniques are required to prevent premature failure induced by environmental aggressive agents. The book presents the most innovative findings both in designing durable new constructions and toward solving durability deficiencies in existing concrete structures, such as innovative special coatings, hydrophobic impregnations and pore blocking treatments that are very efficient in severe aggressive environments (seawater, biocorrosion, etc.). Moreover, migrant corrosion inhibitors applied on concrete surfaces are able to greatly improve resistance against both chloride and CO2. Finally, special reinforcements and fibers, together with a proper designed cathodic protection, can greatly contribute to obtaining long-life reinforced concrete structures, significantly increasing the sustainability of concrete construction.
durability of concrete --- chloride penetration --- rebar corrosion --- corrosion inhibitor --- silane-based surface treatment --- concrete --- reinforcing steel --- zinc coating --- HDG --- corrosion --- chlorides --- LPR --- EIS --- SEM --- EDS --- geopolymer coatings (GPC) --- setting time --- compressive strength --- adhesive strength --- impermeability --- steel fiber reinforced concrete --- zinc phosphate --- chloride ion corrosion resistance --- microstructure --- bond strength --- pullout --- optical measurements --- 3D scanning --- electrochemical noise --- fly ash --- cathodic protection --- coatings --- durability --- concrete bio-corrosion --- sulfuric acid corrosion control --- magnesium hydroxide coating --- sewerage pipe systems --- acid spraying test --- n/a
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
This Special Issue addresses a topic that is of great relevance as, nowadays, in developed countries, individuals spend most of their time indoors and, depending on each person, the presence at home ranges between 60% and 90% of the day, with 30% of that time spent sleeping. Considering these data, indoor residential environments have a direct influence on human health, especially considering that, in developing countries, significant levels of indoor pollution make housing unsafe, having an impact on the health of inhabitants. Therefore, housing is a key health factor for people all over the world, and various parameters, such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, can contribute to healthy architecture, as well as to the conditions that can result from the poor application of these parameters. The articles in this Special Issue thus address issues concerning indoor environmental quality (IEQ), which is described, more simply, as the conditions inside a building. This includes air quality, but also access to daylight and views, pleasant acoustic conditions, and occupant control over lighting and thermal comfort. IEQ also includes the functional aspects of the space, such as whether the layout provides easy access to tools and people when needed and whether there is sufficient space for the occupants. Building managers and operators can increase building occupant satisfaction by considering all aspects of IEQ rather than focusing on temperature or air quality alone.
Research & information: general --- indoor air quality --- thermal comfort --- airtightness --- natural ventilation --- educational buildings --- thermal insulation --- sustainable materials --- fique --- thermal conductivity --- thermogravimetry --- green architecture --- urban heat island --- microclimate --- feed-forward neural networks --- air temperature measurements --- in-situ measurements --- urban models --- urban environment --- climate change --- COVID-19 --- MgO-based cement --- sustainability --- energy efficiency --- architecture --- building evaluation --- functional adequacy --- human-centered --- IEQ --- learning space --- place attachment --- social interaction --- social participation --- sustainable building --- quality air --- epidemiology --- data analysis --- statistics --- nursing homes --- geopolymer --- fly ash --- basalt fiber --- basalt waste aggregate --- mechanical properties --- lean manufacturing --- modular construction --- sustainability architecture --- efficient buildings --- lean construction
Choose an application
Soil erosion by wind is significant to Earth systems and human health. There is a strong interest in understanding the factors and processes of soil erosion by wind as well as in developing and applying methods to control dust emission from soils and to stabilize active sands. The Special Issue contains information on applications of natural and synthetic materials to reduce soil erosion, development of materials and methods, experimental methods and modeling, impacts on the soil quality and the environments, and quantification of the efficiency in dust control and sand stabilization applications.
Research & information: general --- wind erosion --- dust --- suppressants --- PM10 --- wind tunnel --- lignin --- resin --- bitumen --- PVA --- brine --- direct shear test --- post-harvest waste --- Chinese Loess Plateau --- optimal dosage --- prevailing wind --- sand transport --- Hobq Desert --- Yellow River --- dune stabilization --- restoration --- coastal dune --- vegetation removal --- multi-taxa --- biodiversity --- LTER --- temporal dynamics --- shrub encroachment --- loess --- metakaolin --- dust control --- geopolymer --- soil erosion --- global carbon budget --- soil organic carbon erosion --- deposition --- gaseous emissions --- enrichment ratio --- soil depletion --- preferential removal --- microbial-induced calcite precipitation --- desert soil --- biostimulation --- erosion mitigation --- surface shear stress --- isolated dune --- bridge --- aeolian processes --- arid areas --- dust emission --- dust sources --- environmental pollution --- infrastructures --- human activities --- particle size distribution --- polymers --- sand dune --- soil quality
Choose an application
Coal mining continues to make advances, especially in the areas of safety and environmental protection as a result of mining. This book contains nine peer-reviewed articles on green coal mining that address most of the important issues associated with improving coal mining. These issues include the protection of water above coal mines, both surface and ground water, and the subsidence that occurs during and after mining with methods to limit it and methods of rehabilitation. Additional issues include mine entry and production area support and methods to control gas emissions.
History of engineering & technology --- decision making --- management --- mines --- multi-criteria analysis --- project --- risk --- restoration --- coal gangue --- geopolymer --- mechanical activation --- thermal activation --- mechanical property --- microstructure --- water protection --- water-conservation coal mining (WCCM) --- influencing factors --- “five maps --- three zones --- and two zoning plans” --- water conductive fractured zone (WCFZ) --- acoustic emission (AE) --- coal --- deep mining --- mining layouts --- lignite --- reclamation --- rehabilitation --- land use --- decision-making --- optimisation --- sustainability --- longwall coal mining --- ground control --- subsidence --- uplift --- surface movement --- radar-interferometry --- long-term behavior --- sustainable mining --- Belgium --- foamed concrete --- orthogonal experiment --- optimum mix --- coal mine goaf --- gas isolation --- longwall mining --- weak geological condition --- gate-entry stability --- remaining coal thickness --- wooden cribs --- gangue --- load-displacement characteristics --- pressure-compressibility characteristics
Choose an application
Improving the durability of reinforced concrete structures is a mandatory strategy to reduce the environmental impact of construction materials together with aiming to limit carbon dioxide emissions, energy consumption and natural raw materials depletion. Hence, for both new and existing concrete structures, proper protective techniques are required to prevent premature failure induced by environmental aggressive agents. The book presents the most innovative findings both in designing durable new constructions and toward solving durability deficiencies in existing concrete structures, such as innovative special coatings, hydrophobic impregnations and pore blocking treatments that are very efficient in severe aggressive environments (seawater, biocorrosion, etc.). Moreover, migrant corrosion inhibitors applied on concrete surfaces are able to greatly improve resistance against both chloride and CO2. Finally, special reinforcements and fibers, together with a proper designed cathodic protection, can greatly contribute to obtaining long-life reinforced concrete structures, significantly increasing the sustainability of concrete construction.
Technology: general issues --- History of engineering & technology --- durability of concrete --- chloride penetration --- rebar corrosion --- corrosion inhibitor --- silane-based surface treatment --- concrete --- reinforcing steel --- zinc coating --- HDG --- corrosion --- chlorides --- LPR --- EIS --- SEM --- EDS --- geopolymer coatings (GPC) --- setting time --- compressive strength --- adhesive strength --- impermeability --- steel fiber reinforced concrete --- zinc phosphate --- chloride ion corrosion resistance --- microstructure --- bond strength --- pullout --- optical measurements --- 3D scanning --- electrochemical noise --- fly ash --- cathodic protection --- coatings --- durability --- concrete bio-corrosion --- sulfuric acid corrosion control --- magnesium hydroxide coating --- sewerage pipe systems --- acid spraying test --- n/a
Choose an application
Coal mining continues to make advances, especially in the areas of safety and environmental protection as a result of mining. This book contains nine peer-reviewed articles on green coal mining that address most of the important issues associated with improving coal mining. These issues include the protection of water above coal mines, both surface and ground water, and the subsidence that occurs during and after mining with methods to limit it and methods of rehabilitation. Additional issues include mine entry and production area support and methods to control gas emissions.
decision making --- management --- mines --- multi-criteria analysis --- project --- risk --- restoration --- coal gangue --- geopolymer --- mechanical activation --- thermal activation --- mechanical property --- microstructure --- water protection --- water-conservation coal mining (WCCM) --- influencing factors --- “five maps --- three zones --- and two zoning plans” --- water conductive fractured zone (WCFZ) --- acoustic emission (AE) --- coal --- deep mining --- mining layouts --- lignite --- reclamation --- rehabilitation --- land use --- decision-making --- optimisation --- sustainability --- longwall coal mining --- ground control --- subsidence --- uplift --- surface movement --- radar-interferometry --- long-term behavior --- sustainable mining --- Belgium --- foamed concrete --- orthogonal experiment --- optimum mix --- coal mine goaf --- gas isolation --- longwall mining --- weak geological condition --- gate-entry stability --- remaining coal thickness --- wooden cribs --- gangue --- load-displacement characteristics --- pressure-compressibility characteristics
Listing 1 - 10 of 46 | << page >> |
Sort by
|