Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Genome duplication
Authors: ---
ISBN: 9780415442060 0415442060 Year: 2011 Publisher: London Garland Science, Taylor & Francis Group

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Genetics in Rice
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rice feeds more than half of the world population. Its small genome size and ease in transformation have made rice the model crop in plant physiology and genetics. Molecular as well as Mendelian, forward as well as reverse genetics collaborate with each other to expand rice genetics. The wild relatives of rice belonging to the genus Oryza are distributed in Asia, Africa, Latin America and Oceania. They are good sources for the study of domestication and adaptation. Rice was the first crop to have its entire genome sequenced. With the help of the reference genome of Nipponbare and the advent of the next generation sequencer, the study of the rice genome has been accelerated. The mining of DNA polymorphism has permitted map-based cloning, QTL (quantitative trait loci) analysis, and the production of many kinds of experimental lines, such as recombinant inbred lines, backcross inbred lines, and chromosomal segment substitution lines. Inter- and intraspecific hybridization among Oryza species has opened the door to various levels of reproductive barriers ranging from prezygotic to postzygotic. This Special Issue contains eleven papers on genetic studies of rice and its relatives utilizing the rich genetic resources and/or rich genome information described above.


Book
Molecular Basis of Cardiovascular Diseases: Implications of Natriuretic Peptides
Authors: ---
ISBN: 3039215833 3039215825 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The natriuretic peptides (NPs) family includes a class of hormones and their receptors needed for the physiological control of cardiovascular functions. The discovery of NPs provided a fundamental contribution into our understanding of the physiological regulation of blood pressure, and of heart and kidney functions. NPs have also been implicated in the pathogenesis of several cardiovascular diseases (CVDs), including hypertension, atherosclerosis, heart failure, and stroke. A fine comprehension of the molecular mechanisms dependent from NPs and underlying the promotion of cardiovascular damage has contributed to improve our understanding of the molecular basis of all major CVDs. Finally, the opportunity to target NPs in order to develop new therapeutic tools for a better treatment of CVDs has been developed over the years. The current Special Issue of the Journal covers all major aspects of the molecular implications of NPs in physiology and pathology of the cardiovascular system, including NP-based therapeutic approaches.


Book
Genetics in Rice
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rice feeds more than half of the world population. Its small genome size and ease in transformation have made rice the model crop in plant physiology and genetics. Molecular as well as Mendelian, forward as well as reverse genetics collaborate with each other to expand rice genetics. The wild relatives of rice belonging to the genus Oryza are distributed in Asia, Africa, Latin America and Oceania. They are good sources for the study of domestication and adaptation. Rice was the first crop to have its entire genome sequenced. With the help of the reference genome of Nipponbare and the advent of the next generation sequencer, the study of the rice genome has been accelerated. The mining of DNA polymorphism has permitted map-based cloning, QTL (quantitative trait loci) analysis, and the production of many kinds of experimental lines, such as recombinant inbred lines, backcross inbred lines, and chromosomal segment substitution lines. Inter- and intraspecific hybridization among Oryza species has opened the door to various levels of reproductive barriers ranging from prezygotic to postzygotic. This Special Issue contains eleven papers on genetic studies of rice and its relatives utilizing the rich genetic resources and/or rich genome information described above.


Book
Genetics in Rice
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rice feeds more than half of the world population. Its small genome size and ease in transformation have made rice the model crop in plant physiology and genetics. Molecular as well as Mendelian, forward as well as reverse genetics collaborate with each other to expand rice genetics. The wild relatives of rice belonging to the genus Oryza are distributed in Asia, Africa, Latin America and Oceania. They are good sources for the study of domestication and adaptation. Rice was the first crop to have its entire genome sequenced. With the help of the reference genome of Nipponbare and the advent of the next generation sequencer, the study of the rice genome has been accelerated. The mining of DNA polymorphism has permitted map-based cloning, QTL (quantitative trait loci) analysis, and the production of many kinds of experimental lines, such as recombinant inbred lines, backcross inbred lines, and chromosomal segment substitution lines. Inter- and intraspecific hybridization among Oryza species has opened the door to various levels of reproductive barriers ranging from prezygotic to postzygotic. This Special Issue contains eleven papers on genetic studies of rice and its relatives utilizing the rich genetic resources and/or rich genome information described above.


Book
Novel Enzyme and Whole-Cell Biocatalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of a circular economy relies on waste reduction, valorization, and recycling. Global trends for “green” synthesis of chemicals have positioned the field of enzyme technology and biocatalysis (multi-enzymes and whole-cells) as an alternative for the synthesis of more social- and environmentally-responsible bio-based chemicals. Recent advances in synthetic biology, computational tools, and metabolic engineering have supported the discovery of new enzymes and the rational design of whole-cell biocatalysts. In this book, we highlight these current advances in the field of biocatalysis, with special emphasis on novel enzymes and whole-cell biocatalysts for applications in several industrial biotechnological applications.

Keywords

Technology: general issues --- 2G ethanol --- hemicellulose usage --- S. cerevisiae --- enzyme immobilization --- cell immobilization --- SHIF --- mannonate dehydratase --- mannose metabolism --- Thermoplasma acidophilum --- mannono-1,4-lactone --- 2-keto-3-deoxygluconate --- aldohexose dehydrogenase --- cyclodextrin glucanotransferases --- large-ring cyclodextrins --- semi rational mutagenesis --- carbohydrate active enzymes --- archaea --- glycosidase --- Sulfolobus solfataricus --- Saccharolobus solfataricus --- Lactobacillus --- β-galactosidase --- immobilization --- cell surface display --- LysM domains --- biocatalysis --- extremophile --- 5-hydroxymethylfurfural --- 5-hydroxymethylfuroic acid --- platform chemicals --- whole cells --- New Delhi metallo-β-lactamase --- NDM-24 --- kinetic profile --- secondary structure --- glycoside hydrolase --- thioglycosides --- Fervidobacterium --- endo-β-1,3-glucanase --- laminarinase --- thermostable --- gene duplication --- cofactor F420 --- deazaflavin --- oxidoreductase --- hydride transfer --- hydrogenation --- asymmetric synthesis --- cofactor biosynthesis --- ω-transaminase --- α-methylbenzylamine --- chiral amine --- biotransformation --- biodiesel --- waste cooking oil --- lipase immobilization --- interfacial activation --- functionalized magnetic nanoparticles --- DNase --- kinetic profiles --- RNase --- semi-rational mutagenesis --- substrate specificity --- engineered Escherichia coli --- flavonoid glucuronides --- multienzyme whole-cell biocatalyst --- organic solvents --- psychrophilic yeast --- hormone-sensitive lipase --- Glaciozyma antarctica --- Antarctica and homology modelling --- keratinase --- serine protease --- metalloprotease --- peptidase --- keratin hydrolysis --- keratin waste --- valorisation --- bioactive peptides --- ene reductase --- enzyme sourcing --- old yellow enzyme --- solvent stability --- machine learning --- flux optimization --- artificial neural network --- synthetic biology --- glycolysis --- metabolic pathways optimization --- cell-free systems --- hydrolase --- lipase --- esterase --- Bacillus subtilis lipase A --- transesterification --- organic solvent --- water activity --- immobilized lipase --- RSM --- fuel properties --- chemo-enzymatic synthesis --- glycosyl transferases --- protein engineering --- carbohydrates --- industrial enzymes --- thermostable enzymes --- glycoside hydrolases --- cell-free biocatalysis --- natural and non-natural multi-enzyme pathways --- bio-based chemicals


Book
Novel Enzyme and Whole-Cell Biocatalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of a circular economy relies on waste reduction, valorization, and recycling. Global trends for “green” synthesis of chemicals have positioned the field of enzyme technology and biocatalysis (multi-enzymes and whole-cells) as an alternative for the synthesis of more social- and environmentally-responsible bio-based chemicals. Recent advances in synthetic biology, computational tools, and metabolic engineering have supported the discovery of new enzymes and the rational design of whole-cell biocatalysts. In this book, we highlight these current advances in the field of biocatalysis, with special emphasis on novel enzymes and whole-cell biocatalysts for applications in several industrial biotechnological applications.

Keywords

2G ethanol --- hemicellulose usage --- S. cerevisiae --- enzyme immobilization --- cell immobilization --- SHIF --- mannonate dehydratase --- mannose metabolism --- Thermoplasma acidophilum --- mannono-1,4-lactone --- 2-keto-3-deoxygluconate --- aldohexose dehydrogenase --- cyclodextrin glucanotransferases --- large-ring cyclodextrins --- semi rational mutagenesis --- carbohydrate active enzymes --- archaea --- glycosidase --- Sulfolobus solfataricus --- Saccharolobus solfataricus --- Lactobacillus --- β-galactosidase --- immobilization --- cell surface display --- LysM domains --- biocatalysis --- extremophile --- 5-hydroxymethylfurfural --- 5-hydroxymethylfuroic acid --- platform chemicals --- whole cells --- New Delhi metallo-β-lactamase --- NDM-24 --- kinetic profile --- secondary structure --- glycoside hydrolase --- thioglycosides --- Fervidobacterium --- endo-β-1,3-glucanase --- laminarinase --- thermostable --- gene duplication --- cofactor F420 --- deazaflavin --- oxidoreductase --- hydride transfer --- hydrogenation --- asymmetric synthesis --- cofactor biosynthesis --- ω-transaminase --- α-methylbenzylamine --- chiral amine --- biotransformation --- biodiesel --- waste cooking oil --- lipase immobilization --- interfacial activation --- functionalized magnetic nanoparticles --- DNase --- kinetic profiles --- RNase --- semi-rational mutagenesis --- substrate specificity --- engineered Escherichia coli --- flavonoid glucuronides --- multienzyme whole-cell biocatalyst --- organic solvents --- psychrophilic yeast --- hormone-sensitive lipase --- Glaciozyma antarctica --- Antarctica and homology modelling --- keratinase --- serine protease --- metalloprotease --- peptidase --- keratin hydrolysis --- keratin waste --- valorisation --- bioactive peptides --- ene reductase --- enzyme sourcing --- old yellow enzyme --- solvent stability --- machine learning --- flux optimization --- artificial neural network --- synthetic biology --- glycolysis --- metabolic pathways optimization --- cell-free systems --- hydrolase --- lipase --- esterase --- Bacillus subtilis lipase A --- transesterification --- organic solvent --- water activity --- immobilized lipase --- RSM --- fuel properties --- chemo-enzymatic synthesis --- glycosyl transferases --- protein engineering --- carbohydrates --- industrial enzymes --- thermostable enzymes --- glycoside hydrolases --- cell-free biocatalysis --- natural and non-natural multi-enzyme pathways --- bio-based chemicals


Book
Novel Enzyme and Whole-Cell Biocatalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of a circular economy relies on waste reduction, valorization, and recycling. Global trends for “green” synthesis of chemicals have positioned the field of enzyme technology and biocatalysis (multi-enzymes and whole-cells) as an alternative for the synthesis of more social- and environmentally-responsible bio-based chemicals. Recent advances in synthetic biology, computational tools, and metabolic engineering have supported the discovery of new enzymes and the rational design of whole-cell biocatalysts. In this book, we highlight these current advances in the field of biocatalysis, with special emphasis on novel enzymes and whole-cell biocatalysts for applications in several industrial biotechnological applications.

Keywords

Technology: general issues --- 2G ethanol --- hemicellulose usage --- S. cerevisiae --- enzyme immobilization --- cell immobilization --- SHIF --- mannonate dehydratase --- mannose metabolism --- Thermoplasma acidophilum --- mannono-1,4-lactone --- 2-keto-3-deoxygluconate --- aldohexose dehydrogenase --- cyclodextrin glucanotransferases --- large-ring cyclodextrins --- semi rational mutagenesis --- carbohydrate active enzymes --- archaea --- glycosidase --- Sulfolobus solfataricus --- Saccharolobus solfataricus --- Lactobacillus --- β-galactosidase --- immobilization --- cell surface display --- LysM domains --- biocatalysis --- extremophile --- 5-hydroxymethylfurfural --- 5-hydroxymethylfuroic acid --- platform chemicals --- whole cells --- New Delhi metallo-β-lactamase --- NDM-24 --- kinetic profile --- secondary structure --- glycoside hydrolase --- thioglycosides --- Fervidobacterium --- endo-β-1,3-glucanase --- laminarinase --- thermostable --- gene duplication --- cofactor F420 --- deazaflavin --- oxidoreductase --- hydride transfer --- hydrogenation --- asymmetric synthesis --- cofactor biosynthesis --- ω-transaminase --- α-methylbenzylamine --- chiral amine --- biotransformation --- biodiesel --- waste cooking oil --- lipase immobilization --- interfacial activation --- functionalized magnetic nanoparticles --- DNase --- kinetic profiles --- RNase --- semi-rational mutagenesis --- substrate specificity --- engineered Escherichia coli --- flavonoid glucuronides --- multienzyme whole-cell biocatalyst --- organic solvents --- psychrophilic yeast --- hormone-sensitive lipase --- Glaciozyma antarctica --- Antarctica and homology modelling --- keratinase --- serine protease --- metalloprotease --- peptidase --- keratin hydrolysis --- keratin waste --- valorisation --- bioactive peptides --- ene reductase --- enzyme sourcing --- old yellow enzyme --- solvent stability --- machine learning --- flux optimization --- artificial neural network --- synthetic biology --- glycolysis --- metabolic pathways optimization --- cell-free systems --- hydrolase --- lipase --- esterase --- Bacillus subtilis lipase A --- transesterification --- organic solvent --- water activity --- immobilized lipase --- RSM --- fuel properties --- chemo-enzymatic synthesis --- glycosyl transferases --- protein engineering --- carbohydrates --- industrial enzymes --- thermostable enzymes --- glycoside hydrolases --- cell-free biocatalysis --- natural and non-natural multi-enzyme pathways --- bio-based chemicals

Listing 1 - 8 of 8
Sort by