Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This book provides recent studies focused on chemical biology and biocatalysis applied to organic synthesis. The articles range from topics such as fungal metabolism and fungi-mediated biotransformations to the exploitation of specific enzymes in biocatalyzed reactions, also including works on the characterization of enzymes and the study of their catalytic activity. Overall, ten studies are presented that provide the reader with relevant, fresh insights on the use of enzymes and on the importance of biocatalysis.
Research & information: general --- 7-hydroxycoumarin --- 3-(2,4-dihydroxyphenyl)-propionic acid --- 3-(2,3,5-trihydroxyphenyl)-propionic acid --- ipso-hydroxylase --- Pseudomonas mandelii --- sweet potato β-amylase (SPA) 2 --- methoxy polyethylene glycol maleimide (Mal-mPEG) 3 --- chemical modification 4 --- enzymatic characteristics --- (S)-N-Boc-3-hydroxypiperidine --- carbonyl reductase --- asymmetric reduction --- rational design --- Rhodococcus erythropolis --- biotransformation --- oxidation --- apocarotenoids --- flavours --- fungi --- ionone --- damascone --- theaspirane --- enzymatic activity assay --- adenylate kinase --- spectrophotometry --- orthogonal experiment --- bromothymol blue --- Botrytis cinerea --- antifungal activity --- laccase --- 2,6-dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone derivatives --- citral --- citronellal --- enantioselectivity --- Old Yellow Enzyme --- site-saturation mutagenesis --- substrate binding mode --- browning reaction --- polyphenol oxidase --- ultrasonic processing --- structural changes --- aggregation --- ganoderic acid A --- glucosyltransferase --- acidic --- Bacillus subtilis --- triterpenoid --- Lentinula edodes --- endogenous formaldehyde --- GGT --- C-S lyase --- expression levels --- 7-hydroxycoumarin --- 3-(2,4-dihydroxyphenyl)-propionic acid --- 3-(2,3,5-trihydroxyphenyl)-propionic acid --- ipso-hydroxylase --- Pseudomonas mandelii --- sweet potato β-amylase (SPA) 2 --- methoxy polyethylene glycol maleimide (Mal-mPEG) 3 --- chemical modification 4 --- enzymatic characteristics --- (S)-N-Boc-3-hydroxypiperidine --- carbonyl reductase --- asymmetric reduction --- rational design --- Rhodococcus erythropolis --- biotransformation --- oxidation --- apocarotenoids --- flavours --- fungi --- ionone --- damascone --- theaspirane --- enzymatic activity assay --- adenylate kinase --- spectrophotometry --- orthogonal experiment --- bromothymol blue --- Botrytis cinerea --- antifungal activity --- laccase --- 2,6-dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone derivatives --- citral --- citronellal --- enantioselectivity --- Old Yellow Enzyme --- site-saturation mutagenesis --- substrate binding mode --- browning reaction --- polyphenol oxidase --- ultrasonic processing --- structural changes --- aggregation --- ganoderic acid A --- glucosyltransferase --- acidic --- Bacillus subtilis --- triterpenoid --- Lentinula edodes --- endogenous formaldehyde --- GGT --- C-S lyase --- expression levels
Choose an application
This book provides recent studies focused on chemical biology and biocatalysis applied to organic synthesis. The articles range from topics such as fungal metabolism and fungi-mediated biotransformations to the exploitation of specific enzymes in biocatalyzed reactions, also including works on the characterization of enzymes and the study of their catalytic activity. Overall, ten studies are presented that provide the reader with relevant, fresh insights on the use of enzymes and on the importance of biocatalysis.
Research & information: general --- 7-hydroxycoumarin --- 3-(2,4-dihydroxyphenyl)-propionic acid --- 3-(2,3,5-trihydroxyphenyl)-propionic acid --- ipso-hydroxylase --- Pseudomonas mandelii --- sweet potato β-amylase (SPA) 2 --- methoxy polyethylene glycol maleimide (Mal-mPEG) 3 --- chemical modification 4 --- enzymatic characteristics --- (S)-N-Boc-3-hydroxypiperidine --- carbonyl reductase --- asymmetric reduction --- rational design --- Rhodococcus erythropolis --- biotransformation --- oxidation --- apocarotenoids --- flavours --- fungi --- ionone --- damascone --- theaspirane --- enzymatic activity assay --- adenylate kinase --- spectrophotometry --- orthogonal experiment --- bromothymol blue --- Botrytis cinerea --- antifungal activity --- laccase --- 2,6-dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone derivatives --- citral --- citronellal --- enantioselectivity --- Old Yellow Enzyme --- site-saturation mutagenesis --- substrate binding mode --- browning reaction --- polyphenol oxidase --- ultrasonic processing --- structural changes --- aggregation --- ganoderic acid A --- glucosyltransferase --- acidic --- Bacillus subtilis --- triterpenoid --- Lentinula edodes --- endogenous formaldehyde --- GGT --- C-S lyase --- expression levels --- n/a
Choose an application
This book provides recent studies focused on chemical biology and biocatalysis applied to organic synthesis. The articles range from topics such as fungal metabolism and fungi-mediated biotransformations to the exploitation of specific enzymes in biocatalyzed reactions, also including works on the characterization of enzymes and the study of their catalytic activity. Overall, ten studies are presented that provide the reader with relevant, fresh insights on the use of enzymes and on the importance of biocatalysis.
7-hydroxycoumarin --- 3-(2,4-dihydroxyphenyl)-propionic acid --- 3-(2,3,5-trihydroxyphenyl)-propionic acid --- ipso-hydroxylase --- Pseudomonas mandelii --- sweet potato β-amylase (SPA) 2 --- methoxy polyethylene glycol maleimide (Mal-mPEG) 3 --- chemical modification 4 --- enzymatic characteristics --- (S)-N-Boc-3-hydroxypiperidine --- carbonyl reductase --- asymmetric reduction --- rational design --- Rhodococcus erythropolis --- biotransformation --- oxidation --- apocarotenoids --- flavours --- fungi --- ionone --- damascone --- theaspirane --- enzymatic activity assay --- adenylate kinase --- spectrophotometry --- orthogonal experiment --- bromothymol blue --- Botrytis cinerea --- antifungal activity --- laccase --- 2,6-dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone derivatives --- citral --- citronellal --- enantioselectivity --- Old Yellow Enzyme --- site-saturation mutagenesis --- substrate binding mode --- browning reaction --- polyphenol oxidase --- ultrasonic processing --- structural changes --- aggregation --- ganoderic acid A --- glucosyltransferase --- acidic --- Bacillus subtilis --- triterpenoid --- Lentinula edodes --- endogenous formaldehyde --- GGT --- C-S lyase --- expression levels --- n/a
Choose an application
Carbohydrate-active enzymes are responsible for both biosynthesis and the breakdown of carbohydrates and glycoconjugates. They are involved in many metabolic pathways; in the biosynthesis and degradation of various biomolecules, such as bacterial exopolysaccharides, starch, cellulose and lignin; and in the glycosylation of proteins and lipids. Carbohydrate-active enzymes are classified into glycoside hydrolases, glycosyltransferases, polysaccharide lyases, carbohydrate esterases, and enzymes with auxiliary activities (CAZy database, www.cazy.org). Glycosyltransferases synthesize a huge variety of complex carbohydrates with different degrees of polymerization, moieties and branching. On the other hand, complex carbohydrate breakdown is carried out by glycoside hydrolases, polysaccharide lyases and carbohydrate esterases. Their interesting reactions have attracted the attention of researchers across scientific fields, ranging from basic research to biotechnology. Interest in carbohydrate-active enzymes is due not only to their ability to build and degrade biopolymers—which is highly relevant in biotechnology—but also because they are involved in bacterial biofilm formation, and in glycosylation of proteins and lipids, with important health implications. This book gathers new research results and reviews to broaden our understanding of carbohydrate-active enzymes, their mutants and their reaction products at the molecular level.
Research & information: general --- Biology, life sciences --- glycoside hydrolase --- xylanase --- carbohydrate-binding module --- CBM truncation --- halo-tolerant --- xylan hydrolysis --- pectate lyase --- Paenibacillus polymyxa --- pectins --- degradation --- Lactobacillus --- GH13_18 --- sucrose phosphorylase --- glycoside phosphorylase --- Ilumatobacter coccineus --- Thermoanaerobacterium thermosaccharolyticum --- crystallography --- galactosidase --- hydrolysis --- reaction mechanism --- complex structures --- cold-adapted --- GH2 --- Cellulase --- random mutagenesis --- cellulose degradation --- structural analysis --- α-amylase --- starch degradation --- biotechnology --- structure --- pyruvylation --- pyruvyltransferase --- exopolysaccharides --- capsular polysaccharides --- cell wall glycopolymers --- N-glycans --- lipopolysaccharides --- biosynthesis --- sequence space --- pyruvate analytics --- Nanopore sequencing --- ganoderic acid --- Bacillus thuringiensis --- biotransformation --- glycosyltransferase --- whole genome sequencing --- applied biocatalysis --- enzyme cascades --- chemoenzymatic synthesis --- sugar chemistry --- carbohydrate --- Leloir --- nucleotide --- Enzymatic glycosylation --- alkyl glycosides (AG)s --- Deep eutectic solvents (DES) --- Amy A --- alcoholysis --- methanol --- circular dichroism --- protein stability --- alpha-amylase --- biomass --- hemicellulose --- bioethanol --- xylanolytic enzyme --- hemicellulase --- lysozyme --- peptidoglycan cleavage --- avian gut GH22 --- crystal structure --- glycosylation --- UDP-glucose pyrophosphorylase --- UDP-glucose --- nucleotide donors --- Rhodococcus, Actinobacteria, gene redundancy --- Leloir glycosyltransferases --- activated sugar --- UTP --- thermophilic fungus --- β-glucosidases --- Chaetomium thermophilum --- protein structure --- fungal enzymes --- endo-α-(1→6)-d-mannase --- mannoside --- Mycobacterium --- lipomannan --- lipoarabinomannan --- phosphatidylinositol mannosides --- GH68 --- fructosyltransferase --- fructooligosaccharides --- FOS biosynthesis --- prebiotic oligosaccharides --- Arxula adeninivorans --- α-glucosidase --- maltose --- panose --- amylopectin --- glycogen --- inhibition by Tris --- transglycosylation --- glycoside hydrolyase --- Trichoderma harzianum --- complete saccharification --- lignocellulose --- N-acetylhexosamine specificity --- GH20 --- phylogenetic analysis --- NAG-oxazoline --- acceptor diversity --- lacto-N-triose II --- human milk oligosaccharides --- NMR --- molecular phylogeny --- α2,8-sialyltransferases --- polySia motifs --- evolution --- ST8Sia --- functional genomics --- glycoside hydrolase --- xylanase --- carbohydrate-binding module --- CBM truncation --- halo-tolerant --- xylan hydrolysis --- pectate lyase --- Paenibacillus polymyxa --- pectins --- degradation --- Lactobacillus --- GH13_18 --- sucrose phosphorylase --- glycoside phosphorylase --- Ilumatobacter coccineus --- Thermoanaerobacterium thermosaccharolyticum --- crystallography --- galactosidase --- hydrolysis --- reaction mechanism --- complex structures --- cold-adapted --- GH2 --- Cellulase --- random mutagenesis --- cellulose degradation --- structural analysis --- α-amylase --- starch degradation --- biotechnology --- structure --- pyruvylation --- pyruvyltransferase --- exopolysaccharides --- capsular polysaccharides --- cell wall glycopolymers --- N-glycans --- lipopolysaccharides --- biosynthesis --- sequence space --- pyruvate analytics --- Nanopore sequencing --- ganoderic acid --- Bacillus thuringiensis --- biotransformation --- glycosyltransferase --- whole genome sequencing --- applied biocatalysis --- enzyme cascades --- chemoenzymatic synthesis --- sugar chemistry --- carbohydrate --- Leloir --- nucleotide --- Enzymatic glycosylation --- alkyl glycosides (AG)s --- Deep eutectic solvents (DES) --- Amy A --- alcoholysis --- methanol --- circular dichroism --- protein stability --- alpha-amylase --- biomass --- hemicellulose --- bioethanol --- xylanolytic enzyme --- hemicellulase --- lysozyme --- peptidoglycan cleavage --- avian gut GH22 --- crystal structure --- glycosylation --- UDP-glucose pyrophosphorylase --- UDP-glucose --- nucleotide donors --- Rhodococcus, Actinobacteria, gene redundancy --- Leloir glycosyltransferases --- activated sugar --- UTP --- thermophilic fungus --- β-glucosidases --- Chaetomium thermophilum --- protein structure --- fungal enzymes --- endo-α-(1→6)-d-mannase --- mannoside --- Mycobacterium --- lipomannan --- lipoarabinomannan --- phosphatidylinositol mannosides --- GH68 --- fructosyltransferase --- fructooligosaccharides --- FOS biosynthesis --- prebiotic oligosaccharides --- Arxula adeninivorans --- α-glucosidase --- maltose --- panose --- amylopectin --- glycogen --- inhibition by Tris --- transglycosylation --- glycoside hydrolyase --- Trichoderma harzianum --- complete saccharification --- lignocellulose --- N-acetylhexosamine specificity --- GH20 --- phylogenetic analysis --- NAG-oxazoline --- acceptor diversity --- lacto-N-triose II --- human milk oligosaccharides --- NMR --- molecular phylogeny --- α2,8-sialyltransferases --- polySia motifs --- evolution --- ST8Sia --- functional genomics
Choose an application
Carbohydrate-active enzymes are responsible for both biosynthesis and the breakdown of carbohydrates and glycoconjugates. They are involved in many metabolic pathways; in the biosynthesis and degradation of various biomolecules, such as bacterial exopolysaccharides, starch, cellulose and lignin; and in the glycosylation of proteins and lipids. Carbohydrate-active enzymes are classified into glycoside hydrolases, glycosyltransferases, polysaccharide lyases, carbohydrate esterases, and enzymes with auxiliary activities (CAZy database, www.cazy.org). Glycosyltransferases synthesize a huge variety of complex carbohydrates with different degrees of polymerization, moieties and branching. On the other hand, complex carbohydrate breakdown is carried out by glycoside hydrolases, polysaccharide lyases and carbohydrate esterases. Their interesting reactions have attracted the attention of researchers across scientific fields, ranging from basic research to biotechnology. Interest in carbohydrate-active enzymes is due not only to their ability to build and degrade biopolymers—which is highly relevant in biotechnology—but also because they are involved in bacterial biofilm formation, and in glycosylation of proteins and lipids, with important health implications. This book gathers new research results and reviews to broaden our understanding of carbohydrate-active enzymes, their mutants and their reaction products at the molecular level.
glycoside hydrolase --- xylanase --- carbohydrate-binding module --- CBM truncation --- halo-tolerant --- xylan hydrolysis --- pectate lyase --- Paenibacillus polymyxa --- pectins --- degradation --- Lactobacillus --- GH13_18 --- sucrose phosphorylase --- glycoside phosphorylase --- Ilumatobacter coccineus --- Thermoanaerobacterium thermosaccharolyticum --- crystallography --- galactosidase --- hydrolysis --- reaction mechanism --- complex structures --- cold-adapted --- GH2 --- Cellulase --- random mutagenesis --- cellulose degradation --- structural analysis --- α-amylase --- starch degradation --- biotechnology --- structure --- pyruvylation --- pyruvyltransferase --- exopolysaccharides --- capsular polysaccharides --- cell wall glycopolymers --- N-glycans --- lipopolysaccharides --- biosynthesis --- sequence space --- pyruvate analytics --- Nanopore sequencing --- ganoderic acid --- Bacillus thuringiensis --- biotransformation --- glycosyltransferase --- whole genome sequencing --- applied biocatalysis --- enzyme cascades --- chemoenzymatic synthesis --- sugar chemistry --- carbohydrate --- Leloir --- nucleotide --- Enzymatic glycosylation --- alkyl glycosides (AG)s --- Deep eutectic solvents (DES) --- Amy A --- alcoholysis --- methanol --- circular dichroism --- protein stability --- alpha-amylase --- biomass --- hemicellulose --- bioethanol --- xylanolytic enzyme --- hemicellulase --- lysozyme --- peptidoglycan cleavage --- avian gut GH22 --- crystal structure --- glycosylation --- UDP-glucose pyrophosphorylase --- UDP-glucose --- nucleotide donors --- Rhodococcus, Actinobacteria, gene redundancy --- Leloir glycosyltransferases --- activated sugar --- UTP --- thermophilic fungus --- β-glucosidases --- Chaetomium thermophilum --- protein structure --- fungal enzymes --- endo-α-(1→6)-d-mannase --- mannoside --- Mycobacterium --- lipomannan --- lipoarabinomannan --- phosphatidylinositol mannosides --- GH68 --- fructosyltransferase --- fructooligosaccharides --- FOS biosynthesis --- prebiotic oligosaccharides --- Arxula adeninivorans --- α-glucosidase --- maltose --- panose --- amylopectin --- glycogen --- inhibition by Tris --- transglycosylation --- glycoside hydrolyase --- Trichoderma harzianum --- complete saccharification --- lignocellulose --- N-acetylhexosamine specificity --- GH20 --- phylogenetic analysis --- NAG-oxazoline --- acceptor diversity --- lacto-N-triose II --- human milk oligosaccharides --- NMR --- molecular phylogeny --- α2,8-sialyltransferases --- polySia motifs --- evolution --- ST8Sia --- functional genomics --- n/a
Listing 1 - 5 of 5 |
Sort by
|