Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Galectin 1 --- Galectin 3 --- Carcinoma --- Adenoma --- Antigens, Differentiation --- Neoplasm Proteins --- metabolism
Choose an application
Galectins are a family of soluble beta-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. There are sixteen recognized mammalian galectin genes, and their expression profiles are very different between cell types, tissues, and species. This Special Issue covers recent progress in the field of the cell biology of galectins, relevant concepts of galectin regulatory mechanisms, and biomedical aspects of these unique multifunctional proteins.
Research & information: general --- Biology, life sciences --- galectin-7 --- p53 --- MMP-9 --- cancer --- gain-of-function --- vasculature --- gene expression --- tube formation --- sprouting --- VEGF --- integrins --- galectin --- extracellular matrix --- microenvironment --- Yersinia enterocolitica --- YopP --- Galectin-1 --- nitric oxide --- macrophages --- epithelial tissues --- apoptosis --- targeting --- inhibitors --- β-hairpin --- β-sandwich --- blood group B --- lectin --- sugar code --- LGALS16 --- placenta --- brain tissues --- cell differentiation --- transcription factor --- miRNA --- galectin-3 --- cardiac fibrosis --- heart failure --- atrial fibrillation --- chronic inflammation --- MMPs --- microRNAs --- lncRNAs --- pectin --- structure and function --- bioactive polysaccharides --- galectin-3 inhibition --- galacto-oligosaccharides --- galectins --- intestinal epithelial cells --- β-3′galactosyllactose --- immunomodulation --- mucosal immunity --- O-GlcNAc --- unconventional secretion --- extraembryonic endoderm --- n/a --- β-3'galactosyllactose
Choose an application
Galectins are a family of soluble beta-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. There are sixteen recognized mammalian galectin genes, and their expression profiles are very different between cell types, tissues, and species. This Special Issue covers recent progress in the field of the cell biology of galectins, relevant concepts of galectin regulatory mechanisms, and biomedical aspects of these unique multifunctional proteins.
galectin-7 --- p53 --- MMP-9 --- cancer --- gain-of-function --- vasculature --- gene expression --- tube formation --- sprouting --- VEGF --- integrins --- galectin --- extracellular matrix --- microenvironment --- Yersinia enterocolitica --- YopP --- Galectin-1 --- nitric oxide --- macrophages --- epithelial tissues --- apoptosis --- targeting --- inhibitors --- β-hairpin --- β-sandwich --- blood group B --- lectin --- sugar code --- LGALS16 --- placenta --- brain tissues --- cell differentiation --- transcription factor --- miRNA --- galectin-3 --- cardiac fibrosis --- heart failure --- atrial fibrillation --- chronic inflammation --- MMPs --- microRNAs --- lncRNAs --- pectin --- structure and function --- bioactive polysaccharides --- galectin-3 inhibition --- galacto-oligosaccharides --- galectins --- intestinal epithelial cells --- β-3′galactosyllactose --- immunomodulation --- mucosal immunity --- O-GlcNAc --- unconventional secretion --- extraembryonic endoderm --- n/a --- β-3'galactosyllactose
Choose an application
Galectins are a family of soluble beta-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. There are sixteen recognized mammalian galectin genes, and their expression profiles are very different between cell types, tissues, and species. This Special Issue covers recent progress in the field of the cell biology of galectins, relevant concepts of galectin regulatory mechanisms, and biomedical aspects of these unique multifunctional proteins.
Research & information: general --- Biology, life sciences --- galectin-7 --- p53 --- MMP-9 --- cancer --- gain-of-function --- vasculature --- gene expression --- tube formation --- sprouting --- VEGF --- integrins --- galectin --- extracellular matrix --- microenvironment --- Yersinia enterocolitica --- YopP --- Galectin-1 --- nitric oxide --- macrophages --- epithelial tissues --- apoptosis --- targeting --- inhibitors --- β-hairpin --- β-sandwich --- blood group B --- lectin --- sugar code --- LGALS16 --- placenta --- brain tissues --- cell differentiation --- transcription factor --- miRNA --- galectin-3 --- cardiac fibrosis --- heart failure --- atrial fibrillation --- chronic inflammation --- MMPs --- microRNAs --- lncRNAs --- pectin --- structure and function --- bioactive polysaccharides --- galectin-3 inhibition --- galacto-oligosaccharides --- galectins --- intestinal epithelial cells --- β-3'galactosyllactose --- immunomodulation --- mucosal immunity --- O-GlcNAc --- unconventional secretion --- extraembryonic endoderm
Choose an application
The cooperation of highly specialized cell types maintains the homeostasis of multicellular organisms. The disturbance of that harmony contributes to the development of several diseases. Most of the cellular functions are executed by proteins, so it is essential to investigate biological processes at the protein level. Antibodies, complex biomolecules with high specificity, are used to recognize our protein of interest in a process known as “immunophenotyping”. One of the routinely used methods to study cellular proteins is flow cytometry, which detects cell surface or intracellular proteins at single-cell resolution. The other most frequent technique is the traditional immunohistochemical investigation of microscopic sections of human tissues. We called authors to publish their latest data studying cancer or autoimmune diseases by immunophenotyping.
CD8+CD28− T cells --- cancer immunology --- glioblastoma --- immunotherapy --- malignant glioma --- cancer --- accidental cell death --- oncosis --- DDR --- parthanatos --- flow cytometry --- systemic lupus erythematosus --- T cells --- glycosylation --- sialylation --- lectin binding --- glycosylation enzymes --- galectin 1 --- choriocarcinoma --- hydatidiform mole --- galectin --- gestational trophoblastic disease --- placental-specific gene --- systems biology --- trophoblast differentiation --- B cells --- non-switched B cells --- systemic sclerosis --- dcSSc --- TLR --- CD180 --- RP105 --- CpG --- IL-6 --- IL-10 --- natural autoantibodies --- IgM --- citrate synthase --- DNA topoisomerase I --- unfolded protein response --- Inositol-requiring enzyme 1 (IRE1) --- PKR-like endoplasmic reticulum kinase (PERK) --- Glucose-regulated protein 78 (GRP78) --- Activating transcription factor 6 (ATF6) --- immune cells --- T cell --- macrophage --- tumor microenvironment --- single cell mass cytometry --- metastatic breast cancer --- myeloid-derived suppressor cells --- immunophenotyping --- breast cancer --- trastuzumab --- chimeric antigen receptor --- cell therapy --- neuroendocrine neoplasia --- neuroendocrine tumor --- neuroendocrine carcinoma --- immunohistochemistry --- syntaxin 1
Choose an application
The cooperation of highly specialized cell types maintains the homeostasis of multicellular organisms. The disturbance of that harmony contributes to the development of several diseases. Most of the cellular functions are executed by proteins, so it is essential to investigate biological processes at the protein level. Antibodies, complex biomolecules with high specificity, are used to recognize our protein of interest in a process known as “immunophenotyping”. One of the routinely used methods to study cellular proteins is flow cytometry, which detects cell surface or intracellular proteins at single-cell resolution. The other most frequent technique is the traditional immunohistochemical investigation of microscopic sections of human tissues. We called authors to publish their latest data studying cancer or autoimmune diseases by immunophenotyping.
Medicine --- CD8+CD28− T cells --- cancer immunology --- glioblastoma --- immunotherapy --- malignant glioma --- cancer --- accidental cell death --- oncosis --- DDR --- parthanatos --- flow cytometry --- systemic lupus erythematosus --- T cells --- glycosylation --- sialylation --- lectin binding --- glycosylation enzymes --- galectin 1 --- choriocarcinoma --- hydatidiform mole --- galectin --- gestational trophoblastic disease --- placental-specific gene --- systems biology --- trophoblast differentiation --- B cells --- non-switched B cells --- systemic sclerosis --- dcSSc --- TLR --- CD180 --- RP105 --- CpG --- IL-6 --- IL-10 --- natural autoantibodies --- IgM --- citrate synthase --- DNA topoisomerase I --- unfolded protein response --- Inositol-requiring enzyme 1 (IRE1) --- PKR-like endoplasmic reticulum kinase (PERK) --- Glucose-regulated protein 78 (GRP78) --- Activating transcription factor 6 (ATF6) --- immune cells --- T cell --- macrophage --- tumor microenvironment --- single cell mass cytometry --- metastatic breast cancer --- myeloid-derived suppressor cells --- immunophenotyping --- breast cancer --- trastuzumab --- chimeric antigen receptor --- cell therapy --- neuroendocrine neoplasia --- neuroendocrine tumor --- neuroendocrine carcinoma --- immunohistochemistry --- syntaxin 1
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
Research & information: general --- Biology, life sciences --- Biochemistry --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
Research & information: general --- Biology, life sciences --- Biochemistry --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Listing 1 - 9 of 9 |
Sort by
|