Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.
Technology: general issues --- Three Point Bending test --- mode I fracture toughness --- selective laser sintering --- polyamide and Alumide --- geometrical errors --- microstructure. --- 3D printing --- additive manufacturing --- material extrusion --- silicone --- meniscus implant --- material jetting --- polymer --- machine capability --- process capability --- statistical process control --- quality --- variability --- tolerance grade --- Fused Filament Fabrication --- thermoplastic polyurethane --- energy absorption --- dynamic compression --- crashworthiness --- Simplified Rubber Material --- Ls Dyna --- magnetic composites --- ferrite composites --- field structuring --- microstructure control --- rheological modifications --- fused filament fabrication --- polymers --- fibre reinforcement --- mechanical properties --- CFRP --- PLA mold --- fused deposition modeling --- vacuum bag technology --- 3D scanning --- bike saddle --- impact resistance --- bioinspired --- helicoidal structure --- electrospinning --- piezoelectric --- PVDF --- barium titanate --- nanocomposites --- printed electronics --- inkjet printing --- nanomaterial ink --- poly(ethylene terephthalate) --- bisphenol --- crystallization kinetics --- thermal property --- melt polycondensation --- polymer resin --- turbomachinery --- optimization --- Three Point Bending test --- mode I fracture toughness --- selective laser sintering --- polyamide and Alumide --- geometrical errors --- microstructure. --- 3D printing --- additive manufacturing --- material extrusion --- silicone --- meniscus implant --- material jetting --- polymer --- machine capability --- process capability --- statistical process control --- quality --- variability --- tolerance grade --- Fused Filament Fabrication --- thermoplastic polyurethane --- energy absorption --- dynamic compression --- crashworthiness --- Simplified Rubber Material --- Ls Dyna --- magnetic composites --- ferrite composites --- field structuring --- microstructure control --- rheological modifications --- fused filament fabrication --- polymers --- fibre reinforcement --- mechanical properties --- CFRP --- PLA mold --- fused deposition modeling --- vacuum bag technology --- 3D scanning --- bike saddle --- impact resistance --- bioinspired --- helicoidal structure --- electrospinning --- piezoelectric --- PVDF --- barium titanate --- nanocomposites --- printed electronics --- inkjet printing --- nanomaterial ink --- poly(ethylene terephthalate) --- bisphenol --- crystallization kinetics --- thermal property --- melt polycondensation --- polymer resin --- turbomachinery --- optimization
Choose an application
Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.
Technology: general issues --- Three Point Bending test --- mode I fracture toughness --- selective laser sintering --- polyamide and Alumide --- geometrical errors --- microstructure. --- 3D printing --- additive manufacturing --- material extrusion --- silicone --- meniscus implant --- material jetting --- polymer --- machine capability --- process capability --- statistical process control --- quality --- variability --- tolerance grade --- Fused Filament Fabrication --- thermoplastic polyurethane --- energy absorption --- dynamic compression --- crashworthiness --- Simplified Rubber Material --- Ls Dyna --- magnetic composites --- ferrite composites --- field structuring --- microstructure control --- rheological modifications --- fused filament fabrication --- polymers --- fibre reinforcement --- mechanical properties --- CFRP --- PLA mold --- fused deposition modeling --- vacuum bag technology --- 3D scanning --- bike saddle --- impact resistance --- bioinspired --- helicoidal structure --- electrospinning --- piezoelectric --- PVDF --- barium titanate --- nanocomposites --- printed electronics --- inkjet printing --- nanomaterial ink --- poly(ethylene terephthalate) --- bisphenol --- crystallization kinetics --- thermal property --- melt polycondensation --- polymer resin --- turbomachinery --- optimization --- n/a
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
Technology: general issues --- History of engineering & technology --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Choose an application
Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.
Three Point Bending test --- mode I fracture toughness --- selective laser sintering --- polyamide and Alumide --- geometrical errors --- microstructure. --- 3D printing --- additive manufacturing --- material extrusion --- silicone --- meniscus implant --- material jetting --- polymer --- machine capability --- process capability --- statistical process control --- quality --- variability --- tolerance grade --- Fused Filament Fabrication --- thermoplastic polyurethane --- energy absorption --- dynamic compression --- crashworthiness --- Simplified Rubber Material --- Ls Dyna --- magnetic composites --- ferrite composites --- field structuring --- microstructure control --- rheological modifications --- fused filament fabrication --- polymers --- fibre reinforcement --- mechanical properties --- CFRP --- PLA mold --- fused deposition modeling --- vacuum bag technology --- 3D scanning --- bike saddle --- impact resistance --- bioinspired --- helicoidal structure --- electrospinning --- piezoelectric --- PVDF --- barium titanate --- nanocomposites --- printed electronics --- inkjet printing --- nanomaterial ink --- poly(ethylene terephthalate) --- bisphenol --- crystallization kinetics --- thermal property --- melt polycondensation --- polymer resin --- turbomachinery --- optimization --- n/a
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
Technology: general issues --- History of engineering & technology --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Choose an application
Composites have increasingly been used in various structural components in the aerospace, marine, automotive, and wind energy sectors. The material characterization of composites is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue aims to solicit papers concerning promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review process and will only be considered for publication if they meet journal standards. Selected top articles may have their processing charges waived at the recommendation of reviewers and the Guest Editor.
Research & information: general --- structural dynamics --- composite plastics --- stiffness --- damping --- fiber orientation --- ODF --- viscoelasticity --- geopolymer concrete --- fly-ash --- bottom-ash --- freeze-thaw --- leachability --- non-destructive test --- TCLP --- RFT --- fiber matrix interface --- finite element analysis --- characterization --- composite --- measurements --- testing --- structural monitoring --- flax-epoxy composite --- interlaminar fracture energy --- fracture toughness --- delamination --- Mode I --- Mode II and Mixed-mode I-II interlaminar fracture --- critical energy release rate --- machine learning --- mould filling simulations --- composite materials --- liquid moulding --- lattice cell structures --- InsideBCC --- equivalent solid properties --- three-dimensional printing --- nacre --- hexagonal tablets --- analytical model --- finite element simulations --- Abaqus --- fused filament fabrication --- PLA --- bamboo --- mechanical strength --- damage detection --- laminated composite plates --- modal analysis --- curvature mode shape --- strain energy --- structural dynamics --- composite plastics --- stiffness --- damping --- fiber orientation --- ODF --- viscoelasticity --- geopolymer concrete --- fly-ash --- bottom-ash --- freeze-thaw --- leachability --- non-destructive test --- TCLP --- RFT --- fiber matrix interface --- finite element analysis --- characterization --- composite --- measurements --- testing --- structural monitoring --- flax-epoxy composite --- interlaminar fracture energy --- fracture toughness --- delamination --- Mode I --- Mode II and Mixed-mode I-II interlaminar fracture --- critical energy release rate --- machine learning --- mould filling simulations --- composite materials --- liquid moulding --- lattice cell structures --- InsideBCC --- equivalent solid properties --- three-dimensional printing --- nacre --- hexagonal tablets --- analytical model --- finite element simulations --- Abaqus --- fused filament fabrication --- PLA --- bamboo --- mechanical strength --- damage detection --- laminated composite plates --- modal analysis --- curvature mode shape --- strain energy
Choose an application
The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.
History of engineering & technology --- “skin-core-skin” structure --- flow-induced crystallization --- multiscale simulation --- crystal morphology --- additive manufacturing --- fused filament fabrication --- material extrusion --- 3D-printing --- highly-filled polymers --- metals and ceramics --- cellulose insulation pressboard --- magnetron sputtering --- polytetrafluoroethylene --- nano structure --- breakdown --- hydrophobicity --- replication --- microfeature --- nanofeature --- injection molding --- polylactic acid --- mold temperature --- epoxy --- natural fiber composites --- silk fibers --- extrusion --- four-screw extruder --- finite-time Lyapunov exponents (FTLE) --- Poincaré section --- chaotic manifold --- uniaxial/biaxial stretching --- retardation --- birefringence --- molecular orientation --- stress-optical rule --- polymeric stent --- residual stress --- warpage --- kriging surrogate model --- design optimization --- morphology --- cylindrites --- numerical simulation --- morphology prediction --- shear layer --- twin screw extruder --- simulation --- residence time distribution --- PP/TiO2 nanocomposites --- conversion --- laser-assisted thermal imprinting --- pressure --- pattern size --- thermoplastic polymer --- microlens array --- microinjection molding --- film stretching --- composite laminates --- “skin-core-skin” structure --- flow-induced crystallization --- multiscale simulation --- crystal morphology --- additive manufacturing --- fused filament fabrication --- material extrusion --- 3D-printing --- highly-filled polymers --- metals and ceramics --- cellulose insulation pressboard --- magnetron sputtering --- polytetrafluoroethylene --- nano structure --- breakdown --- hydrophobicity --- replication --- microfeature --- nanofeature --- injection molding --- polylactic acid --- mold temperature --- epoxy --- natural fiber composites --- silk fibers --- extrusion --- four-screw extruder --- finite-time Lyapunov exponents (FTLE) --- Poincaré section --- chaotic manifold --- uniaxial/biaxial stretching --- retardation --- birefringence --- molecular orientation --- stress-optical rule --- polymeric stent --- residual stress --- warpage --- kriging surrogate model --- design optimization --- morphology --- cylindrites --- numerical simulation --- morphology prediction --- shear layer --- twin screw extruder --- simulation --- residence time distribution --- PP/TiO2 nanocomposites --- conversion --- laser-assisted thermal imprinting --- pressure --- pattern size --- thermoplastic polymer --- microlens array --- microinjection molding --- film stretching --- composite laminates
Choose an application
The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.
History of engineering & technology --- “skin-core-skin” structure --- flow-induced crystallization --- multiscale simulation --- crystal morphology --- additive manufacturing --- fused filament fabrication --- material extrusion --- 3D-printing --- highly-filled polymers --- metals and ceramics --- cellulose insulation pressboard --- magnetron sputtering --- polytetrafluoroethylene --- nano structure --- breakdown --- hydrophobicity --- replication --- microfeature --- nanofeature --- injection molding --- polylactic acid --- mold temperature --- epoxy --- natural fiber composites --- silk fibers --- extrusion --- four-screw extruder --- finite-time Lyapunov exponents (FTLE) --- Poincaré section --- chaotic manifold --- uniaxial/biaxial stretching --- retardation --- birefringence --- molecular orientation --- stress-optical rule --- polymeric stent --- residual stress --- warpage --- kriging surrogate model --- design optimization --- morphology --- cylindrites --- numerical simulation --- morphology prediction --- shear layer --- twin screw extruder --- simulation --- residence time distribution --- PP/TiO2 nanocomposites --- conversion --- laser-assisted thermal imprinting --- pressure --- pattern size --- thermoplastic polymer --- microlens array --- microinjection molding --- film stretching --- composite laminates
Choose an application
The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.
“skin-core-skin” structure --- flow-induced crystallization --- multiscale simulation --- crystal morphology --- additive manufacturing --- fused filament fabrication --- material extrusion --- 3D-printing --- highly-filled polymers --- metals and ceramics --- cellulose insulation pressboard --- magnetron sputtering --- polytetrafluoroethylene --- nano structure --- breakdown --- hydrophobicity --- replication --- microfeature --- nanofeature --- injection molding --- polylactic acid --- mold temperature --- epoxy --- natural fiber composites --- silk fibers --- extrusion --- four-screw extruder --- finite-time Lyapunov exponents (FTLE) --- Poincaré section --- chaotic manifold --- uniaxial/biaxial stretching --- retardation --- birefringence --- molecular orientation --- stress-optical rule --- polymeric stent --- residual stress --- warpage --- kriging surrogate model --- design optimization --- morphology --- cylindrites --- numerical simulation --- morphology prediction --- shear layer --- twin screw extruder --- simulation --- residence time distribution --- PP/TiO2 nanocomposites --- conversion --- laser-assisted thermal imprinting --- pressure --- pattern size --- thermoplastic polymer --- microlens array --- microinjection molding --- film stretching --- composite laminates
Listing 1 - 10 of 28 | << page >> |
Sort by
|