Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (4)

Listing 1 - 4 of 4
Sort by

Book
Biopolymers from Natural Resources
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.

Keywords

Technology: general issues --- History of engineering & technology --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)—PHBH --- poly(ε-caprolactone)—PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- n/a --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL


Book
Biopolymers from Natural Resources
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.

Keywords

PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)—PHBH --- poly(ε-caprolactone)—PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- n/a --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL


Book
Biopolymers from Natural Resources
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.

Keywords

Technology: general issues --- History of engineering & technology --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution


Book
New Research Trends for Textiles
Author:
ISBN: 3036560815 3036560823 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

PART 1. Functional Textiles: Photochromic Textiles Based upon Aqueous Blends of Oxygen-Deficient WO3-x and TiO2 Nanocrystals. 50/60 Hz Power Grid Noise as a Skin Contact Measure of Textile ECG Electrodes. Characterizing Steam Penetration through Thermal Protective Fabric Materials. Stretchable Textile Yarn Based on UHF RFID Helical Tag. Fibers and Textiles for Personal Protective Equipment. Textile-Based Sound Sensors (TSS). High-Performance and Functional Fiber Materials. Geotextiles—A Versatile Tool for Environmental Sensitive Applications in Geotechnical Engineering. Review of Fiber- or Yarn-Based Wearable Resistive Strain Sensors. Wearable Actuators: An Overview. Bacterial Secondary Metabolites as Biopigments for Textile Dyeing. PART 2: Process and Modelling. Loop Order Analysis of Weft-Knitted Textiles. New Geometrical Modelling for 2D Fabric and 2.5D Interlock Composites. Meso-Macro Simulations of the Forming of 3D Non-Crimp Woven Fabrics. Continuous Yarn Electrospinning. A Review on Tough Soft Composites at Different Length Scales. Textile Branch and Main Breakthroughs of the Czech Republic in the Field of Textile Machinery. Recent Efforts in Modeling and Simulation of Textiles. PART 3: Control. A Comparison of Two Different Light Booths for Measuring Color Difference of Metameric Pairs. Effect of Textile Characteristics on the AR-Glass Fabric Efficiency. Dielectric Properties of Textile Materials. PART 4: Consumers and Behavior. Development of a Consumer-Based Quality Scale for Artisan Textiles. Organic Cotton Clothing Purchase Behavior. A Review on Textile Recycling Practices and Challenges.

Keywords

Business strategy --- Manufacturing industries --- smart textiles --- wearable --- fiber actuators --- soft exoskeleton --- haptic action --- textile modeling --- homogenization --- beam-based model --- buckling --- folding --- spacer fabrics --- organic cotton --- clothing --- consumer behavior --- Theory of Reasoned Action --- alkali-resistant glass textile --- weaving --- epoxy coating --- filament diameters --- roving fineness --- fabric efficiency --- textile-reinforced concrete --- TRC --- fabric-reinforced cementitious matrix --- FRCM --- textile development --- human and civilization factors --- clothing and technical textiles --- open end spinning --- jet looms --- perpendicularly layered nonwovens --- needleless electrospinning --- textiles --- quality --- artisan --- fabrics --- women in textiles --- soft composite --- mechanical property --- toughness --- toughening mechanism --- fabrication --- application --- helical RFID tag --- helical antenna --- RFID --- textile yarn --- light booth --- metameric pairs --- visual assessment --- gray scale --- standard deviation --- CAM02-UCS --- color difference formula --- thermal protective fabrics --- steam exposure --- fabric properties --- heat and mass transfer --- burn injuries --- textile materials --- complex relative permittivity --- effective medium approximation --- dielectric mixture theory --- electromagnetics --- dielectric characterization --- resistive strain sensor --- fiber-based sensor --- yarn-based sensor --- interconnection --- forming simulation --- multi-scale analyses --- RVE --- hyperelasticity --- thick reinforcements --- nanofibers --- PAN --- cellulose acetate --- biopolymers --- spider silk --- silk fibroin --- 2D fabric --- 2.5D --- interlock composite --- compliance matrix --- textile waste --- reuse and recycling --- municipal solid waste --- composting --- sustainability --- geotextiles --- natural fibers --- synthetic fibers --- geo-engineering --- environmental applications --- high-performance fibers --- functional textiles --- metallized textiles --- inorganic fibers --- Scanning Electron Microscopy (SEM) --- Electron Dispersive Spectroscopy (EDS) --- microbial pigments --- bacterial pigments --- textile --- fibers --- dyeing --- electrocardiogram (ECG) --- Arduino --- electrodes --- conductive coating --- conductive yarn --- sensor --- knitted textiles --- topological modeling --- contact neighborhood --- loop order analysis --- precedence rule --- visualization --- e-textiles --- textile-based sound sensors --- sound monitoring --- smart building --- personal protective equipment --- protective clothing --- special textile structures --- smart textile --- photochromism --- inorganic nanoparticles --- n/a

Listing 1 - 4 of 4
Sort by