Listing 1 - 10 of 10 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
functional annotation --- protein-protein interaction (PPI) --- machine learning --- gene annotation --- intelligent system applications
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Actinomycetes --- functional annotation --- High GC genetics --- Novel biocatalysts --- Extremophile actinobacteria --- secondary metabolites --- Oxidoreductases
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical microbiology & virology --- Microbiology (non-medical) --- Actinomycetes --- functional annotation --- High GC genetics --- Novel biocatalysts --- Extremophile actinobacteria --- secondary metabolites --- Oxidoreductases --- Actinomycetes --- functional annotation --- High GC genetics --- Novel biocatalysts --- Extremophile actinobacteria --- secondary metabolites --- Oxidoreductases
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical genetics --- functional annotation --- protein-protein interaction (PPI) --- machine learning --- gene annotation --- intelligent system applications --- functional annotation --- protein-protein interaction (PPI) --- machine learning --- gene annotation --- intelligent system applications
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical genetics --- functional annotation --- protein-protein interaction (PPI) --- machine learning --- gene annotation --- intelligent system applications
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical microbiology & virology --- Microbiology (non-medical) --- Actinomycetes --- functional annotation --- High GC genetics --- Novel biocatalysts --- Extremophile actinobacteria --- secondary metabolites --- Oxidoreductases
Choose an application
Marine habitats are promising sources to identify novel organisms and compounds. A total of 70% of the planet’s surface is covered by ocean, and little is known about the biosphere within these habitats. In the last few years, numerous novel bioactive compounds or secondary metabolites from marine environments have been described. This is, and will be, a promising source of candidate compounds in pharma research and chemical biology. In recent years, a number of novel techniques have been introduced to the field and it has become easier to actually (bio-)prospect compounds such as enzyme inhibitors. Those novel compounds then need to be characterized and evaluated in comparison to well-known representatives. This Special Issue focuses on the description of novel enzyme inhibitors of marine origin, including bioprospecting, omic approaches, and structural and mechanistic aspects.
sponge Monanchora pulchra --- pentacyclic guanidine alkaloids --- GH36 α-galactosidase --- GH109 α-N-acetylgalactosaminidase --- slow-binding irreversible inhibitor --- monanchomycalin B --- monanhocidin A --- normonanhocidin A --- Alzheimer′s disease --- BACE1 --- acetylcholinesterase --- in silico docking --- phlorotannins --- Ulva intestinalis --- ACE inhibitory peptide --- optimization --- purification --- structural identification --- molecular docking --- secondary metabolites --- Mycosphaerella sp. --- asperchalasine --- α-glucosidase --- kinase inhibitors --- drug development --- marine natural products --- inhibitor --- macroalgae --- marine fish --- protease --- Ulva ohnoi --- functional annotation --- structure–function relation --- natural products --- bioactives --- enzyme inhibition --- inactivation --- marine bacteria --- marine fungi --- marine sponges
Choose an application
Marine habitats are promising sources to identify novel organisms and compounds. A total of 70% of the planet’s surface is covered by ocean, and little is known about the biosphere within these habitats. In the last few years, numerous novel bioactive compounds or secondary metabolites from marine environments have been described. This is, and will be, a promising source of candidate compounds in pharma research and chemical biology. In recent years, a number of novel techniques have been introduced to the field and it has become easier to actually (bio-)prospect compounds such as enzyme inhibitors. Those novel compounds then need to be characterized and evaluated in comparison to well-known representatives. This Special Issue focuses on the description of novel enzyme inhibitors of marine origin, including bioprospecting, omic approaches, and structural and mechanistic aspects.
Research & information: general --- sponge Monanchora pulchra --- pentacyclic guanidine alkaloids --- GH36 α-galactosidase --- GH109 α-N-acetylgalactosaminidase --- slow-binding irreversible inhibitor --- monanchomycalin B --- monanhocidin A --- normonanhocidin A --- Alzheimer′s disease --- BACE1 --- acetylcholinesterase --- in silico docking --- phlorotannins --- Ulva intestinalis --- ACE inhibitory peptide --- optimization --- purification --- structural identification --- molecular docking --- secondary metabolites --- Mycosphaerella sp. --- asperchalasine --- α-glucosidase --- kinase inhibitors --- drug development --- marine natural products --- inhibitor --- macroalgae --- marine fish --- protease --- Ulva ohnoi --- functional annotation --- structure–function relation --- natural products --- bioactives --- enzyme inhibition --- inactivation --- marine bacteria --- marine fungi --- marine sponges
Choose an application
Marine habitats are promising sources to identify novel organisms and compounds. A total of 70% of the planet’s surface is covered by ocean, and little is known about the biosphere within these habitats. In the last few years, numerous novel bioactive compounds or secondary metabolites from marine environments have been described. This is, and will be, a promising source of candidate compounds in pharma research and chemical biology. In recent years, a number of novel techniques have been introduced to the field and it has become easier to actually (bio-)prospect compounds such as enzyme inhibitors. Those novel compounds then need to be characterized and evaluated in comparison to well-known representatives. This Special Issue focuses on the description of novel enzyme inhibitors of marine origin, including bioprospecting, omic approaches, and structural and mechanistic aspects.
Research & information: general --- sponge Monanchora pulchra --- pentacyclic guanidine alkaloids --- GH36 α-galactosidase --- GH109 α-N-acetylgalactosaminidase --- slow-binding irreversible inhibitor --- monanchomycalin B --- monanhocidin A --- normonanhocidin A --- Alzheimer′s disease --- BACE1 --- acetylcholinesterase --- in silico docking --- phlorotannins --- Ulva intestinalis --- ACE inhibitory peptide --- optimization --- purification --- structural identification --- molecular docking --- secondary metabolites --- Mycosphaerella sp. --- asperchalasine --- α-glucosidase --- kinase inhibitors --- drug development --- marine natural products --- inhibitor --- macroalgae --- marine fish --- protease --- Ulva ohnoi --- functional annotation --- structure–function relation --- natural products --- bioactives --- enzyme inhibition --- inactivation --- marine bacteria --- marine fungi --- marine sponges --- sponge Monanchora pulchra --- pentacyclic guanidine alkaloids --- GH36 α-galactosidase --- GH109 α-N-acetylgalactosaminidase --- slow-binding irreversible inhibitor --- monanchomycalin B --- monanhocidin A --- normonanhocidin A --- Alzheimer′s disease --- BACE1 --- acetylcholinesterase --- in silico docking --- phlorotannins --- Ulva intestinalis --- ACE inhibitory peptide --- optimization --- purification --- structural identification --- molecular docking --- secondary metabolites --- Mycosphaerella sp. --- asperchalasine --- α-glucosidase --- kinase inhibitors --- drug development --- marine natural products --- inhibitor --- macroalgae --- marine fish --- protease --- Ulva ohnoi --- functional annotation --- structure–function relation --- natural products --- bioactives --- enzyme inhibition --- inactivation --- marine bacteria --- marine fungi --- marine sponges
Choose an application
Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.
14-3-3 proteins --- n/a --- targeted two-dimensional electrophoresis --- somatic embryogenesis --- nitrogen metabolism --- subtilase --- Sporisorium scitamineum --- non-orthodox seed --- antioxidant activity --- sweet potato plants infected by SPFMV --- photosynthesis --- B. acuminata petals --- chlorophyll deficiency --- seed proteomics --- imbibition --- pollination --- Sarpo Mira --- qRT-PCR --- holm oak --- tuber phosphoproteome --- isobaric tags for relative and absolute quantitation (iTRAQ) --- Quercus ilex --- nucleotide pyrophosphatase/phosphodiesterase --- lettuce --- ?-subunit --- protein phosphatase --- germination --- drought stress --- pyruvate biosynthesis --- weakening of carbon metabolism --- differential proteins --- heterotrimeric G protein --- organ --- LC-MS-based proteomics --- potato proteomics --- smut --- gel-free/label-free proteomics --- ? subunit --- shotgun proteomics --- 2D --- chloroplast --- proteome functional annotation --- Phalaenopsis --- Clematis terniflora DC. --- wheat --- Dn1-1 --- carbon metabolism --- physiological responses --- Zea mays --- phenylpropanoid biosynthesis --- ISR --- mass spectrometric analysis --- patatin --- leaf --- pea (Pisum sativum L.) --- maize --- ergosterol --- Camellia sinensis --- seed storage proteins --- silver nanoparticles --- elevated CO2 --- metacaspase --- SPV2 and SPVG --- SnRK1 --- MALDI-TOF/TOF --- (phospho)-proteomics --- leaf spot --- rice isogenic line --- wheat leaf rust --- pathway analysis --- phosphoproteome --- sugarcane --- senescence --- Oryza sativa L. --- Arabidopsis thaliana --- heat stress --- gene ontology --- innate immunity --- Pseudomonas syringae --- bolting --- chlorophylls --- shoot --- Simmondsia chinensis --- RT-qPCR --- stresses responses --- Solanum tuberosum --- seeds --- GC-TOF-MS --- sucrose --- proteome --- Puccinia recondita --- cultivar --- Zea mays L. --- secondary metabolism --- ROS --- Ricinus communis L. --- after-ripening --- cadmium --- Stagonospora nodorum --- virus induced gene silencing --- quantitative proteomics --- sweet potato plants non-infected by SPFMV --- affinity chromatography --- population variability --- GS3 --- fungal perception --- ammonium --- transcriptome profiling --- mass spectrometry analysis --- papain-like cysteine protease (PLCP) --- cold stress --- nitrate --- late blight disease --- early and late disease stages --- seed imbibition --- lesion mimic mutant --- protease --- proteome map --- seed dormancy --- petal --- 2-DE proteomics --- 2D DIGE --- root --- Phytophthora infestans --- differentially abundant proteins (DAPs) --- polyphenol oxidase --- degradome --- flavonoid --- 14-3-3 --- caspase-like --- proteomics --- RGG4 --- co-infection --- plasma membrane --- chlorotic mutation --- Medicago sativa --- RGG3 --- glycolysis --- barley --- 2-DE --- protein phosphorylation --- western blotting --- N utilization efficiency --- rice --- plant pathogenesis responses --- high temperature --- data-independent acquisition --- pattern recognition receptors --- vegetative storage proteins --- leaf cell wall proteome --- plant-derived smoke --- iTRAQ --- starch --- proteome profiling --- Morus
Listing 1 - 10 of 10 |
Sort by
|