Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.

Keywords

independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- n/a


Book
Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.

Keywords

Technology: general issues --- History of engineering & technology --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake


Book
Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.

Keywords

Technology: general issues --- History of engineering & technology --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- n/a

Listing 1 - 3 of 3
Sort by