Listing 1 - 10 of 109 | << page >> |
Sort by
|
Choose an application
Fractional calculus --- Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus --- Mathematical Sciences --- Applied Mathematics
Choose an application
Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems.--
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
During the past four decades or so, various operators of fractional calculus, such as those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober, Liouville-Caputo, and so on, have been found to be remarkably popular and important due mainly to their demonstrated applications in numerous diverse and widespread fields of the mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional calculus operators provide several potentially useful tools for solving differential, integral, differintegral, and integro-differential equations, together with the fractional-calculus analogues and extensions of each of these equations, and various other problems involving special functions of mathematical physics, as well as their extensions and generalizations in one and more variables. In this Special Issue, we invite and welcome review, expository, and original research articles dealing with the recent advances in the theory of fractional calculus and its multidisciplinary applications.
applied mathematics --- fractional derivatives --- fractional derivatives associated with special functions of mathematical physics --- fractional integro-differential equations --- operators of fractional calculus --- identities and inequalities involving fractional integrals --- fractional differintegral equations --- chaos and fractional dynamics --- fractional differential --- fractional integrals
Choose an application
This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geometry of curves. The second chapter develops the notion of fractional embedding and fractional assymetric calculus of variations in order to find fractional Lagrangian variational structures for classical dissipative partial differential equations. In continuation of this chapter, a fractional analog
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o
Fractional calculus. --- Mathematical models. --- Models, Mathematical --- Simulation methods --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
The book presents a concise introduction to the basic methods and strategies in fractional calculus and enables the reader to catch up with the state of the art in this field as well as to participate and contribute in the development of this exciting research area. The contents are devoted to the application of fractional calculus to physical problems. The fractional concept is applied to subjects in classical mechanics, group theory, quantum mechanics, nuclear physics, hadron spectroscopy and quantum field theory and it will surprise the reader with new intriguing insights. This new, extende
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
This book presents fractional difference, integral, differential, evolution equations and inclusions, and discusses existence and asymptotic behavior of their solutions. Controllability and relaxed control results are obtained. Combining rigorous deduction with abundant examples, it is of interest to nonlinear science researchers using fractional equations as a tool, and physicists, mechanics researchers and engineers studying relevant topics. ContentsFractional Difference EquationsFractional Integral EquationsFractional Differential EquationsFractional Evolution Equations: ContinuedFractional Differential Inclusions
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
This book brings together eleven topics on different aspects of fractional calculus in a single volume. It provides readers the basic knowledge of fractional calculus and introduces advanced topics and applications. The information in the book is presented in four parts: 1. Fractional Diffusion Equations: (i) solutions of fractional diffusion equations using wavelet methods (ii) the maximum principle for time fractional diffusion equations (iii) nonlinear sub-diffusion equations. 2. Mathematical Analysis: (i) shifted Jacobi polynomials for solving and identifying coupled fractional delay differential equations (ii) the monotone iteration principle in the theory of Hadamard fractional delay differential equations (iii) dynamics of fractional order modified Bhalekar-Gejji System (iv) Grunwald-Letnikov derivatives. 3. Computational Techniques: GPU computing of special mathematical functions used in fractional calculus. 4. Reviews: (i) the popular iterative method NIM (ii) fractional derivative with non-singular kernels (iii) some open problems in fractional order nonlinear system This is a useful reference for researchers and graduate level mathematics students seeking knowledge about of fractional calculus and applied mathematics.
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Listing 1 - 10 of 109 | << page >> |
Sort by
|