Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book focuses on applications of the theory of fractional calculus in numerical analysis and various fields of physics and engineering. Inequalities involving fractional calculus operators containing the Mittag–Leffler function in their kernels are of particular interest. Special attention is given to dynamical models, magnetization, hypergeometric series, initial and boundary value problems, and fractional differential equations, among others.
Research & information: general --- Mathematics & science --- fractional derivative --- generalized Mittag-Leffler kernel (GMLK) --- Legendre polynomials --- Legendre spectral collocation method --- dynamical systems --- random time change --- inverse subordinator --- asymptotic behavior --- Mittag–Leffler function --- data fitting --- magnetization --- magnetic fluids --- Gamma function --- Psi function --- Pochhammer symbol --- hypergeometric function 2F1 --- generalized hypergeometric functions tFu --- Gauss’s summation theorem for 2F1(1) --- Kummer’s summation theorem for 2F1(−1) --- generalized Kummer’s summation theorem for 2F1(−1) --- Stirling numbers of the first kind --- Hilfer–Hadamard fractional derivative --- Riemann–Liouville fractional derivative --- Caputo fractional derivative --- fractional differential equations --- inclusions --- nonlocal boundary conditions --- existence and uniqueness --- fixed point --- gamma function --- Beta function --- Mittag-Leffler function --- Generalized Mittag-Leffler functions --- generalized hypergeometric function --- Fox–Wright function --- recurrence relations --- Riemann–Liouville fractional calculus operators --- (α, h-m)-p-convex function --- Fejér–Hadamard inequality --- extended generalized fractional integrals --- Mittag–Leffler functions --- initial value problems --- Laplace transform --- exact solution --- Chebyshev inequality --- Pólya-Szegö inequality --- fractional integral operators --- Wright function --- Srivastava’s polynomials --- fractional calculus operators --- Lavoie–Trottier integral formula --- Oberhettinger integral formula --- fractional partial differential equation --- boundary value problem --- separation of variables --- Mittag-Leffler --- Abel-Gontscharoff Green’s function --- Hermite-Hadamard inequalities --- convex function --- κ-Riemann-Liouville fractional integral --- Dirichlet averages --- B-splines --- dirichlet splines --- Riemann–Liouville fractional integrals --- hypergeometric functions of one and several variables --- generalized Mittag-Leffler type function --- Srivastava–Daoust generalized Lauricella hypergeometric function --- fractional calculus --- Hermite–Hadamard inequality --- Fox H function --- subordinator and inverse stable subordinator --- Lamperti law --- order statistic --- n/a --- Gauss's summation theorem for 2F1(1) --- Kummer's summation theorem for 2F1(−1) --- generalized Kummer's summation theorem for 2F1(−1) --- Hilfer-Hadamard fractional derivative --- Riemann-Liouville fractional derivative --- Fox-Wright function --- Riemann-Liouville fractional calculus operators --- Fejér-Hadamard inequality --- Mittag-Leffler functions --- Pólya-Szegö inequality --- Srivastava's polynomials --- Lavoie-Trottier integral formula --- Abel-Gontscharoff Green's function --- Riemann-Liouville fractional integrals --- Srivastava-Daoust generalized Lauricella hypergeometric function --- Hermite-Hadamard inequality
Choose an application
This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.
fractional derivatives --- fractional integrals --- fractional calculus --- fractional anti-derivatives --- fractional operators --- integral transforms --- convergent series --- fractional integral --- fractional derivative --- numerical approximation --- translation operator --- distributed lag --- time delay --- scaling --- dilation --- memory --- depreciation --- probability distribution --- fractional models --- fractional differentiation --- distributed time delay systems --- Volterra equation --- adsorption --- fractional differential equations --- numerical methods --- smoothness assumptions --- persistent memory --- initial values --- existence --- uniqueness --- Crank–Nicolson scheme --- weighted Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- stability analysis --- convergence order --- Caputo–Fabrizio operator --- Atangana–Baleanu operator --- fractional falculus --- general fractional derivative --- general fractional integral --- Sonine condition --- fractional relaxation equation --- fractional diffusion equation --- Cauchy problem --- initial-boundary-value problem --- inverse problem --- fractional calculus operators --- special functions --- generalized hypergeometric functions --- integral transforms of special functions
Choose an application
This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.
Research & information: general --- Mathematics & science --- fractional derivatives --- fractional integrals --- fractional calculus --- fractional anti-derivatives --- fractional operators --- integral transforms --- convergent series --- fractional integral --- fractional derivative --- numerical approximation --- translation operator --- distributed lag --- time delay --- scaling --- dilation --- memory --- depreciation --- probability distribution --- fractional models --- fractional differentiation --- distributed time delay systems --- Volterra equation --- adsorption --- fractional differential equations --- numerical methods --- smoothness assumptions --- persistent memory --- initial values --- existence --- uniqueness --- Crank–Nicolson scheme --- weighted Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- stability analysis --- convergence order --- Caputo–Fabrizio operator --- Atangana–Baleanu operator --- fractional falculus --- general fractional derivative --- general fractional integral --- Sonine condition --- fractional relaxation equation --- fractional diffusion equation --- Cauchy problem --- initial-boundary-value problem --- inverse problem --- fractional calculus operators --- special functions --- generalized hypergeometric functions --- integral transforms of special functions
Listing 1 - 3 of 3 |
Sort by
|