Listing 1 - 10 of 20 | << page >> |
Sort by
|
Choose an application
Foreign-Body Reaction --- Suture Techniques --- Sutures --- prevention & control --- standards
Choose an application
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment examines many of these challenges, paying particular attention to how the healing of tissues surrounding an implant can impact the intended use of a device. The contributions are
Implants, Artificial. --- Brain. --- Electrodes. --- Foreign-body reaction. --- Nerve tissue. --- Wound healing.
Choose an application
Hernia, Inguinal --- Surgical Mesh --- Patient Satisfaction --- Prospective Studies --- Foreign-Body Reaction --- Prostheses and Implants --- surgery --- pathology
Choose an application
Collagen --- Foreign-Body Reaction --- Interferon-gamma, Recombinant --- Macrophages --- toxicity --- physiopathology --- pharmacology --- physiology
Choose an application
Suture Techniques --- Sutures --- Foreign-Body Reaction --- Prostheses and Implants --- Silicones --- Surgical Instruments --- Blood Vessels --- Wound Healing --- standards --- pathology --- physiology --- physiology
Choose an application
Bone and Bones --- Prostheses and Implants --- Materials Testing --- Biocompatible Materials --- Apatites --- Foreign-Body Reaction --- Osseointegration --- physiology --- etiology
Choose an application
Have you ever heard of a Hype-Cycle? It is a description that was put forward by an IT consultancy firm to describe certain phenomena that happen within the life cycle of new technology products. As Fenn and Raskino stated in their book (Fenn and Raskino 2008), a novel technology - a - “Technology Trigger” - gives rise to a steep increase in interest, leading to the “Peak of Inflated Expectations”. Following an accumulation of more detailed knowledge on the technology and its short-comings, the stake holders may need to traverse a “Trough of Disillusionment”, which is followed by a shallower “Slope of Enlightenment”, before finally reaching the “Plateau of Productivity”. In spite of the limitations and criticisms levied on this over-simplified description of a technology’s life-cycle, it is nonetheless able to describe well the situation we are all experiencing within the brain-machine-interfacing community. Our technology trigger was the development of batch-processed multisite neuronal interfaces based on silicon during the 1980s and 1990s (Sangler and Wise 1990, Campbell, Jones et al. 1991, Wise and Najafi 1991, Rousche and Normann 1992, Nordhausen, Maynard et al. 1996). This gave rise to a seemingly exponential growth of knowledge within the neurosciences, leading to the expectation of thought-controlled devices and prostheses for handicapped people in the very near future (Chapin, Moxon et al. 1999, Wessberg, Stambaugh et al. 2000, Chapin and Moxon 2001, Serruya, Hatsopoulos et al. 2002). Unfortunately, whereas significant steps towards artificial robotic limbs could have been implemented during the last decade (Johannes, Bigelow et al. 2011, Oung, Pohl et al. 2012, Belter, Segil et al. 2013), direct invasive intracortical interfacing was not quite able to keep up with these expectations. Insofar, we are currently facing the challenging, but tedious walk through the Trough of Disillusionment. Undoubtedly, more than two decades of intense research on brain-machine-interfaces (BMI’s) have produced a tremendous wealth of information towards the ultimate goal: a clinically useful cortical prosthesis. Unfortunately even today - after huge fiscal efforts - the goal seems almost to be as far away as it was when it was originally put forward. At the very least, we have to state that one of the main challenges towards a clinical useful BMI has not been sufficiently answered yet: regarding the long term – or even truly chronic – stability of the neural cortical interface, as well as the signals it has to provide over a significant fraction of a human’s lifespan. Even the recently demonstrated advances in BMI’s in both humans and non-human primates have to deal with a severe decay of spiking activity that occurs over weeks and months (Chestek, Gilja et al. 2011, Hochberg, Bacher et al. 2012, Collinger, Kryger et al. 2014, Nuyujukian, Kao et al. 2014, Stavisky, Kao et al. 2014, Wodlinger, Downey et al. 2014) and resolve to simplified features to keep a brain-derived communication channel open (Christie, Tat et al. 2014).
Neuroscience --- Human Anatomy & Physiology --- Health & Biological Sciences --- Hydrogel coating --- Gliosis --- Optical Coherence Tomography --- foreign body reaction --- indwelling implants --- Multisite neuronal recording --- immuno labeling --- flexible microprobes --- compliance match hypothesis
Choose an application
Have you ever heard of a Hype-Cycle? It is a description that was put forward by an IT consultancy firm to describe certain phenomena that happen within the life cycle of new technology products. As Fenn and Raskino stated in their book (Fenn and Raskino 2008), a novel technology - a - “Technology Trigger” - gives rise to a steep increase in interest, leading to the “Peak of Inflated Expectations”. Following an accumulation of more detailed knowledge on the technology and its short-comings, the stake holders may need to traverse a “Trough of Disillusionment”, which is followed by a shallower “Slope of Enlightenment”, before finally reaching the “Plateau of Productivity”. In spite of the limitations and criticisms levied on this over-simplified description of a technology’s life-cycle, it is nonetheless able to describe well the situation we are all experiencing within the brain-machine-interfacing community. Our technology trigger was the development of batch-processed multisite neuronal interfaces based on silicon during the 1980s and 1990s (Sangler and Wise 1990, Campbell, Jones et al. 1991, Wise and Najafi 1991, Rousche and Normann 1992, Nordhausen, Maynard et al. 1996). This gave rise to a seemingly exponential growth of knowledge within the neurosciences, leading to the expectation of thought-controlled devices and prostheses for handicapped people in the very near future (Chapin, Moxon et al. 1999, Wessberg, Stambaugh et al. 2000, Chapin and Moxon 2001, Serruya, Hatsopoulos et al. 2002). Unfortunately, whereas significant steps towards artificial robotic limbs could have been implemented during the last decade (Johannes, Bigelow et al. 2011, Oung, Pohl et al. 2012, Belter, Segil et al. 2013), direct invasive intracortical interfacing was not quite able to keep up with these expectations. Insofar, we are currently facing the challenging, but tedious walk through the Trough of Disillusionment. Undoubtedly, more than two decades of intense research on brain-machine-interfaces (BMI’s) have produced a tremendous wealth of information towards the ultimate goal: a clinically useful cortical prosthesis. Unfortunately even today - after huge fiscal efforts - the goal seems almost to be as far away as it was when it was originally put forward. At the very least, we have to state that one of the main challenges towards a clinical useful BMI has not been sufficiently answered yet: regarding the long term – or even truly chronic – stability of the neural cortical interface, as well as the signals it has to provide over a significant fraction of a human’s lifespan. Even the recently demonstrated advances in BMI’s in both humans and non-human primates have to deal with a severe decay of spiking activity that occurs over weeks and months (Chestek, Gilja et al. 2011, Hochberg, Bacher et al. 2012, Collinger, Kryger et al. 2014, Nuyujukian, Kao et al. 2014, Stavisky, Kao et al. 2014, Wodlinger, Downey et al. 2014) and resolve to simplified features to keep a brain-derived communication channel open (Christie, Tat et al. 2014).
Hydrogel coating --- Gliosis --- Optical Coherence Tomography --- foreign body reaction --- indwelling implants --- Multisite neuronal recording --- immuno labeling --- flexible microprobes --- compliance match hypothesis
Choose an application
Have you ever heard of a Hype-Cycle? It is a description that was put forward by an IT consultancy firm to describe certain phenomena that happen within the life cycle of new technology products. As Fenn and Raskino stated in their book (Fenn and Raskino 2008), a novel technology - a - “Technology Trigger” - gives rise to a steep increase in interest, leading to the “Peak of Inflated Expectations”. Following an accumulation of more detailed knowledge on the technology and its short-comings, the stake holders may need to traverse a “Trough of Disillusionment”, which is followed by a shallower “Slope of Enlightenment”, before finally reaching the “Plateau of Productivity”. In spite of the limitations and criticisms levied on this over-simplified description of a technology’s life-cycle, it is nonetheless able to describe well the situation we are all experiencing within the brain-machine-interfacing community. Our technology trigger was the development of batch-processed multisite neuronal interfaces based on silicon during the 1980s and 1990s (Sangler and Wise 1990, Campbell, Jones et al. 1991, Wise and Najafi 1991, Rousche and Normann 1992, Nordhausen, Maynard et al. 1996). This gave rise to a seemingly exponential growth of knowledge within the neurosciences, leading to the expectation of thought-controlled devices and prostheses for handicapped people in the very near future (Chapin, Moxon et al. 1999, Wessberg, Stambaugh et al. 2000, Chapin and Moxon 2001, Serruya, Hatsopoulos et al. 2002). Unfortunately, whereas significant steps towards artificial robotic limbs could have been implemented during the last decade (Johannes, Bigelow et al. 2011, Oung, Pohl et al. 2012, Belter, Segil et al. 2013), direct invasive intracortical interfacing was not quite able to keep up with these expectations. Insofar, we are currently facing the challenging, but tedious walk through the Trough of Disillusionment. Undoubtedly, more than two decades of intense research on brain-machine-interfaces (BMI’s) have produced a tremendous wealth of information towards the ultimate goal: a clinically useful cortical prosthesis. Unfortunately even today - after huge fiscal efforts - the goal seems almost to be as far away as it was when it was originally put forward. At the very least, we have to state that one of the main challenges towards a clinical useful BMI has not been sufficiently answered yet: regarding the long term – or even truly chronic – stability of the neural cortical interface, as well as the signals it has to provide over a significant fraction of a human’s lifespan. Even the recently demonstrated advances in BMI’s in both humans and non-human primates have to deal with a severe decay of spiking activity that occurs over weeks and months (Chestek, Gilja et al. 2011, Hochberg, Bacher et al. 2012, Collinger, Kryger et al. 2014, Nuyujukian, Kao et al. 2014, Stavisky, Kao et al. 2014, Wodlinger, Downey et al. 2014) and resolve to simplified features to keep a brain-derived communication channel open (Christie, Tat et al. 2014).
Neuroscience --- Human Anatomy & Physiology --- Health & Biological Sciences --- Hydrogel coating --- Gliosis --- Optical Coherence Tomography --- foreign body reaction --- indwelling implants --- Multisite neuronal recording --- immuno labeling --- flexible microprobes --- compliance match hypothesis --- Hydrogel coating --- Gliosis --- Optical Coherence Tomography --- foreign body reaction --- indwelling implants --- Multisite neuronal recording --- immuno labeling --- flexible microprobes --- compliance match hypothesis
Choose an application
Handbook of Biomaterials Biocompatibility is a systematic reference on host response to different biomaterials, taking into account their physical, mechanical and chemical properties. The book reviews recent progress in the design and study of biomaterials biocompatibility, along with current understanding on how to control immune system response. Sections provide the fundamental theories and challenges of biomaterials biocompatibility, the role of different biomaterials physicochemical surface properties on cell responses, cell responses to different physicochemical properties of polymers, ceramics, metals, carbons and nanomaterials, and biomaterials in different tissues, such as the cardiac, nervous system, cartilage and bone. This resource will be suitable for those working in the fields of materials science, regenerative engineering, medicine, medical devices and nanotechnology.--
Biomedical materials. --- Biocompatibility. --- Biocompatible Materials. --- Cellular Microenvironment. --- Foreign-Body Reaction. --- Foreign Body Reaction --- Reaction, Foreign-Body --- Cell Microenvironment --- Cell Microenvironments --- Cellular Microenvironments --- Microenvironment, Cell --- Microenvironment, Cellular --- Microenvironments, Cell --- Microenvironments, Cellular --- Bioartificial Materials --- Hemocompatible Materials --- Biomaterials --- Bioartificial Material --- Biocompatible Material --- Biomaterial --- Hemocompatible Material --- Material, Bioartificial --- Material, Biocompatible --- Material, Hemocompatible --- Materials Testing --- Biomimetic Materials --- Regenerative Medicine --- Biological compatibility --- Biological tolerance --- Biomedical compatibility --- Biomedical tolerance --- Biotolerance --- Compatibility, Biological --- Compatibility, Biomedical --- Tolerance, Biological --- Tolerance, Biomedical --- Biomedical materials --- Biocompatible materials --- Medical materials --- Medicine --- Biomedical engineering --- Materials --- Biocompatibility --- Prosthesis --- Bioartificial materials --- Hemocompatible materials --- Biomaterials (Biomedical materials) --- Biomedical materials - Biocompatibility
Listing 1 - 10 of 20 | << page >> |
Sort by
|