Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Interaction between Waves and Maritime Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the result of a stimulating Special Issue of Water, focusing on the “Interaction between waves and Maritime Structures”. This broadly inclusive title allowed the gathering of articles on different topics of engineering concern, making the book appeal to both scientists and practical engineers. Original contributions on evergreen problems, such as wave overtopping at conventional and unconventional coastal structures, wave-induced pressures at vertical walls, hydraulic stability of rubble mound breakwaters and dynamics of crown-walls indeed represent the main core of the book; however, other intriguing research topics are also tackled, including the solution of the Navier–Stokes equations for biphase flows, the downscaling of large maritime structures in a physical lab, floating bodies mechanics and the numerical modeling of coastline evolution.


Book
Interaction between Waves and Maritime Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the result of a stimulating Special Issue of Water, focusing on the “Interaction between waves and Maritime Structures”. This broadly inclusive title allowed the gathering of articles on different topics of engineering concern, making the book appeal to both scientists and practical engineers. Original contributions on evergreen problems, such as wave overtopping at conventional and unconventional coastal structures, wave-induced pressures at vertical walls, hydraulic stability of rubble mound breakwaters and dynamics of crown-walls indeed represent the main core of the book; however, other intriguing research topics are also tackled, including the solution of the Navier–Stokes equations for biphase flows, the downscaling of large maritime structures in a physical lab, floating bodies mechanics and the numerical modeling of coastline evolution.


Book
Interaction between Waves and Maritime Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the result of a stimulating Special Issue of Water, focusing on the “Interaction between waves and Maritime Structures”. This broadly inclusive title allowed the gathering of articles on different topics of engineering concern, making the book appeal to both scientists and practical engineers. Original contributions on evergreen problems, such as wave overtopping at conventional and unconventional coastal structures, wave-induced pressures at vertical walls, hydraulic stability of rubble mound breakwaters and dynamics of crown-walls indeed represent the main core of the book; however, other intriguing research topics are also tackled, including the solution of the Navier–Stokes equations for biphase flows, the downscaling of large maritime structures in a physical lab, floating bodies mechanics and the numerical modeling of coastline evolution.

Keywords

Technology: general issues --- rock armor stability --- breakwater --- damage --- notional permeability factor --- crown wall failure --- dynamic response --- sliding --- overturning --- bearing capacity --- ship motions --- in-situ observations --- port operation --- transfer functions --- meteorological and ocean conditions --- vessel dimensions --- electrical platform --- hydrodynamic response --- strain --- acceleration --- hydroelastic similarity --- laboratory experiment --- wave overtopping --- flow velocity --- flow depth --- dike --- wave breaking --- experiments --- numerical modelling --- floating cylinder --- water filled --- motion capturing --- wave tank --- wave gauges --- fluid-structure interaction --- free surface --- sloshing --- image analysis --- green water --- wet dam-break bore --- 2D experimental study --- water elevation database --- Venetian lagoon --- flooding --- astronomical tide --- storm surge --- experimental investigation --- two-phase flows --- fluid-structure interactions --- wave decomposition --- floating body --- recurves --- recurve geometry --- vertical seawalls --- wave loads and pressures --- pulsating and impulsive conditions --- validation experiment --- shoreline evolution --- littoral drift --- equivalent wave --- one-line equation --- coastal defenses --- structure response --- rock armor stability --- breakwater --- damage --- notional permeability factor --- crown wall failure --- dynamic response --- sliding --- overturning --- bearing capacity --- ship motions --- in-situ observations --- port operation --- transfer functions --- meteorological and ocean conditions --- vessel dimensions --- electrical platform --- hydrodynamic response --- strain --- acceleration --- hydroelastic similarity --- laboratory experiment --- wave overtopping --- flow velocity --- flow depth --- dike --- wave breaking --- experiments --- numerical modelling --- floating cylinder --- water filled --- motion capturing --- wave tank --- wave gauges --- fluid-structure interaction --- free surface --- sloshing --- image analysis --- green water --- wet dam-break bore --- 2D experimental study --- water elevation database --- Venetian lagoon --- flooding --- astronomical tide --- storm surge --- experimental investigation --- two-phase flows --- fluid-structure interactions --- wave decomposition --- floating body --- recurves --- recurve geometry --- vertical seawalls --- wave loads and pressures --- pulsating and impulsive conditions --- validation experiment --- shoreline evolution --- littoral drift --- equivalent wave --- one-line equation --- coastal defenses --- structure response


Book
Advances in Biological Tissue Biomechanics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advanced experimental and computational biomechanics have become essential components to better understand the physiological and pathological conditions of biological tissues in the human body. Recent advances in medical imaging modalities, image segmentation, tissue characterization experiments, and predictive computer simulations have made major contributions to transforming current therapeutic paradigms, towards the facilitation of patient-specific diagnostics and individualized surgery planning. This Special Issue of Bioengineering on Advances in Biological Tissue Biomechanics, therefore, focuses on research dealing with cutting-edge experimental and computational methodologies for biomechanical investigations of tissues in the human body system across multiple spatial and temporal scales.

Keywords

Research & information: general --- Biology, life sciences --- computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling --- computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling


Book
Advances in Biological Tissue Biomechanics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advanced experimental and computational biomechanics have become essential components to better understand the physiological and pathological conditions of biological tissues in the human body. Recent advances in medical imaging modalities, image segmentation, tissue characterization experiments, and predictive computer simulations have made major contributions to transforming current therapeutic paradigms, towards the facilitation of patient-specific diagnostics and individualized surgery planning. This Special Issue of Bioengineering on Advances in Biological Tissue Biomechanics, therefore, focuses on research dealing with cutting-edge experimental and computational methodologies for biomechanical investigations of tissues in the human body system across multiple spatial and temporal scales.

Keywords

Research & information: general --- Biology, life sciences --- computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling


Book
Advances in Biological Tissue Biomechanics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advanced experimental and computational biomechanics have become essential components to better understand the physiological and pathological conditions of biological tissues in the human body. Recent advances in medical imaging modalities, image segmentation, tissue characterization experiments, and predictive computer simulations have made major contributions to transforming current therapeutic paradigms, towards the facilitation of patient-specific diagnostics and individualized surgery planning. This Special Issue of Bioengineering on Advances in Biological Tissue Biomechanics, therefore, focuses on research dealing with cutting-edge experimental and computational methodologies for biomechanical investigations of tissues in the human body system across multiple spatial and temporal scales.

Keywords

computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling

Listing 1 - 6 of 6
Sort by