Listing 1 - 4 of 4 |
Sort by
|
Choose an application
An important requirement for the combination of two materials in order to get a low stress and low warpage, crack-free composite component is a timely synchronized sintering behavior of both components. The aim of this work was to analyze the effect of the particle size distribution on the sintering behavior and the resulting consequences of the particle size change for the flow properties during injection molding.
flow properties --- Fließverhalten --- Partikelgrößenverteilungen --- feedstock --- Metallpulverspritzgießen --- Sinterverhalten --- sintering behavior --- particle size distribution --- Feedstockmetal injection molding
Choose an application
Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spread an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. This Special Issue aims to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems and composites) and processes. This Special Issue will comprise, not only original research papers, but also review articles.
n/a --- microstructure --- microfluidization --- yield stress --- nonlinear diffusion equation --- particle suspensions --- colloids --- viscous gravity spreading --- nanocomposites --- BMP model --- LCB polypropylene --- diutan gum --- thixotropy --- complex fluids --- traction test --- viscoelasticity --- biopolymer --- normal stresses --- start-up shear --- OpenFOAM --- flow properties --- rheometry --- oscillatory flows --- linear viscoelasticity --- continuum model --- steady-state and transient flow --- interfacial shear rheology --- shear-banding flow --- pressure transducers --- jetting --- natural hydraulic lime --- generalized Boussinesq equation --- prototyping --- piezoelectric --- masonry --- polymer processing --- eco-friendly surfactant --- emulsion stability --- rhamsan gum --- lubricating grease --- computational rheology --- Saffman–Taylor instability --- extrusion --- volume of fluid method --- polymers --- weak gel --- cement pastes --- Carbopol --- thyme oil --- elongational flow --- rheology --- grout --- epoxy --- polystyrene --- shear thickening --- bulk rheology --- porous medium equation --- consolidation --- Dupuit-Forchheimer assumption --- yield stress fluid --- drop formation --- dilatational rheology --- droplet size distribution (DSD) --- Navier-Stokes equations --- Saffman-Taylor instability
Choose an application
This book is a collection of papers published in the Special Issue of Pharmaceutics, entitled "Pharmaceutical Particulates and Membranes for Delivery of Drugs and Bioactive Molecules". A drug release profile is a consequential factor for nanoparticle application, directly related to drug stability and therapeutic results, as well as formulation development. Pharmaceutical particulates of different sizes and shapes (e.g., liposomes, oil-in-water emulsions, polymeric nano- and microspheres, metallic nanoparticles (NPs) such as gold, silver and iron oxide crystals, and core-shell hybrid NPs) offer many diagnostic and therapeutic applications. Membranes are also extensively utilized in many applications. They are especially beneficial to the distribution of macromolecular drugs and biopharmaceutical drugs (peptides, proteins, antibodies, oligonucleotides, plasmids, and viruses) with physicochemical and pharmacokinetic vulnerability. The delivery of drugs and bioactive molecules using particulates and membranes has gained a great deal of attention for various applications, such as the treatment of secondary infections, cancer treatment, skin regeneration, orthopaedic applications, and antimicrobial drug delivery. In addition, several production techniques have been utilized for the fabrication of particulates and membranes in the last decade, which include lyophilisation, micro-emulsion, nano-spray dryer, nano-electrospinning, slip casting and 3D printers. Therefore, pharmaceutical particulates and membranes possess excellent prospects to deliver drugs and bioactive molecules with the potential to improve new delivery strategies like sustained and controlled release.
alginate gelispheres --- textural analysis --- crosslinked matrices --- PLGA discs --- prolonged release --- powder flow properties --- microfluidics --- coculture --- HER2 --- polystyrene µPs --- biofunctionalization --- coaxial electrospraying --- polymeric nanoparticles --- spreading angle --- process-property-performance relationship --- nanoemulsion --- mixture design --- aqueous humor --- antimicrobial activity --- sustained release pellets --- double coating layer --- loxoprofen --- citric acid --- pharmacokinetic studies --- biomimetic magnetite --- drug delivery --- magnetic hyperthermia --- magnetite --- MamC --- nanoparticles stability --- pharmaceutical particulates --- membranes --- drug delivery systems --- bio-imaging --- bioactive molecules --- composite --- N-hydroxyphthalimide --- carbon dots --- polymer gels --- antitumoral activity --- wound dressing --- polymeric membrane --- nanoparticles --- curcumin --- alginate --- pluronic F68 --- drug skin permeation --- Franz cells --- tape stripping --- wound infection --- biofilm --- pseudomonas aeruginosa --- antimicrobial delivery --- polyvinylpyrrolidone --- nanofibers --- red blood cells membrane --- arsenic trioxide --- sodium alginate nanoparticles --- reduce toxicity --- anti-tumor --- pediatric drug delivery --- tuberculosis --- reconstitutable dry suspension --- isoniazid --- polymer-lipid --- microparticulate --- direct emulsification --- n/a
Choose an application
This book is a collection of papers published in the Special Issue of Pharmaceutics, entitled "Pharmaceutical Particulates and Membranes for Delivery of Drugs and Bioactive Molecules". A drug release profile is a consequential factor for nanoparticle application, directly related to drug stability and therapeutic results, as well as formulation development. Pharmaceutical particulates of different sizes and shapes (e.g., liposomes, oil-in-water emulsions, polymeric nano- and microspheres, metallic nanoparticles (NPs) such as gold, silver and iron oxide crystals, and core-shell hybrid NPs) offer many diagnostic and therapeutic applications. Membranes are also extensively utilized in many applications. They are especially beneficial to the distribution of macromolecular drugs and biopharmaceutical drugs (peptides, proteins, antibodies, oligonucleotides, plasmids, and viruses) with physicochemical and pharmacokinetic vulnerability. The delivery of drugs and bioactive molecules using particulates and membranes has gained a great deal of attention for various applications, such as the treatment of secondary infections, cancer treatment, skin regeneration, orthopaedic applications, and antimicrobial drug delivery. In addition, several production techniques have been utilized for the fabrication of particulates and membranes in the last decade, which include lyophilisation, micro-emulsion, nano-spray dryer, nano-electrospinning, slip casting and 3D printers. Therefore, pharmaceutical particulates and membranes possess excellent prospects to deliver drugs and bioactive molecules with the potential to improve new delivery strategies like sustained and controlled release.
Research & information: general --- Biology, life sciences --- alginate gelispheres --- textural analysis --- crosslinked matrices --- PLGA discs --- prolonged release --- powder flow properties --- microfluidics --- coculture --- HER2 --- polystyrene µPs --- biofunctionalization --- coaxial electrospraying --- polymeric nanoparticles --- spreading angle --- process-property-performance relationship --- nanoemulsion --- mixture design --- aqueous humor --- antimicrobial activity --- sustained release pellets --- double coating layer --- loxoprofen --- citric acid --- pharmacokinetic studies --- biomimetic magnetite --- drug delivery --- magnetic hyperthermia --- magnetite --- MamC --- nanoparticles stability --- pharmaceutical particulates --- membranes --- drug delivery systems --- bio-imaging --- bioactive molecules --- composite --- N-hydroxyphthalimide --- carbon dots --- polymer gels --- antitumoral activity --- wound dressing --- polymeric membrane --- nanoparticles --- curcumin --- alginate --- pluronic F68 --- drug skin permeation --- Franz cells --- tape stripping --- wound infection --- biofilm --- pseudomonas aeruginosa --- antimicrobial delivery --- polyvinylpyrrolidone --- nanofibers --- red blood cells membrane --- arsenic trioxide --- sodium alginate nanoparticles --- reduce toxicity --- anti-tumor --- pediatric drug delivery --- tuberculosis --- reconstitutable dry suspension --- isoniazid --- polymer-lipid --- microparticulate --- direct emulsification --- alginate gelispheres --- textural analysis --- crosslinked matrices --- PLGA discs --- prolonged release --- powder flow properties --- microfluidics --- coculture --- HER2 --- polystyrene µPs --- biofunctionalization --- coaxial electrospraying --- polymeric nanoparticles --- spreading angle --- process-property-performance relationship --- nanoemulsion --- mixture design --- aqueous humor --- antimicrobial activity --- sustained release pellets --- double coating layer --- loxoprofen --- citric acid --- pharmacokinetic studies --- biomimetic magnetite --- drug delivery --- magnetic hyperthermia --- magnetite --- MamC --- nanoparticles stability --- pharmaceutical particulates --- membranes --- drug delivery systems --- bio-imaging --- bioactive molecules --- composite --- N-hydroxyphthalimide --- carbon dots --- polymer gels --- antitumoral activity --- wound dressing --- polymeric membrane --- nanoparticles --- curcumin --- alginate --- pluronic F68 --- drug skin permeation --- Franz cells --- tape stripping --- wound infection --- biofilm --- pseudomonas aeruginosa --- antimicrobial delivery --- polyvinylpyrrolidone --- nanofibers --- red blood cells membrane --- arsenic trioxide --- sodium alginate nanoparticles --- reduce toxicity --- anti-tumor --- pediatric drug delivery --- tuberculosis --- reconstitutable dry suspension --- isoniazid --- polymer-lipid --- microparticulate --- direct emulsification
Listing 1 - 4 of 4 |
Sort by
|