Listing 1 - 10 of 16 | << page >> |
Sort by
|
Choose an application
As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.
n/a --- doping --- spin polarization --- first-principle --- quaternary Heusler alloy --- electronic structure --- Prussian blue analogue --- first-principles calculations --- first-principles calculation --- magnetic anisotropy --- pressure --- Nb (100) surface --- Dzyaloshinskii–Moriya interaction --- optical properties --- skyrmion --- equiatomic quaternary Heusler compounds --- Heusler alloy --- interface structure --- first principles --- magnetism --- spin transport --- first-principles method --- monolayer CrSi2 --- half-metallic material --- H adsorption --- half-metallic materials --- lattice dynamics --- spin gapless semiconductor --- first-principle calculations --- half-metallicity --- bulk CrSi2 --- covalent hybridization --- H diffusion --- electronic property --- MgBi2O6 --- physical nature --- Mo doping --- phase stability --- mechanical anisotropy --- quaternary Heusler compound --- magnetic properties --- exchange energy --- Dzyaloshinskii-Moriya interaction
Choose an application
Over recent decades, the increase in computational resources, coupled with the popularity of competitive quantum mechanics alternatives (particularly DFT), has promoted the widespread penetration of quantum mechanics calculations into a variety of fields targeting the reactivity of molecules. This book presents a selection of original research papers and review articles illustrating diverse applications of quantum mechanics in the study of problems involving molecules and their reactivity.
Research & information: general --- Pyrophosphate --- electronic structure --- mechanical properties --- optical properties --- first-principles calculations --- chemical reactivity theory --- HSAB principle --- information theory --- quantum mechanics --- regional complementarity rule --- virial theorem --- free radical scavengers --- antioxidants --- fluoxetine --- depressive disorder --- major --- oxidative stress --- DFT calculations --- reactive oxygen species --- porphyrins, density functional theory --- DFT --- surfaces --- self-assembly --- scanning tunneling microscopy --- dispersion --- nanostructures --- solid state --- condensed phase --- [NiFeSe] hydrogenase --- quantum mechanics (QM)/molecular mechanics (MM), geometry optimizations --- vibrational frequency analyses --- Fourier transform infrared (FTIR) frequencies --- Quercetin molecule --- conformational mobility --- hydroxyl group --- transition state --- concerted rotation of the hydroxyl groups --- quantum-chemical calculations --- quantum technology --- chemical kinetics --- reaction rate --- RRKM theory --- master equation --- coordination complexes --- donor-acceptor systems --- partial electronic flows --- phase-current relations --- subsystem phases --- Pyrophosphate --- electronic structure --- mechanical properties --- optical properties --- first-principles calculations --- chemical reactivity theory --- HSAB principle --- information theory --- quantum mechanics --- regional complementarity rule --- virial theorem --- free radical scavengers --- antioxidants --- fluoxetine --- depressive disorder --- major --- oxidative stress --- DFT calculations --- reactive oxygen species --- porphyrins, density functional theory --- DFT --- surfaces --- self-assembly --- scanning tunneling microscopy --- dispersion --- nanostructures --- solid state --- condensed phase --- [NiFeSe] hydrogenase --- quantum mechanics (QM)/molecular mechanics (MM), geometry optimizations --- vibrational frequency analyses --- Fourier transform infrared (FTIR) frequencies --- Quercetin molecule --- conformational mobility --- hydroxyl group --- transition state --- concerted rotation of the hydroxyl groups --- quantum-chemical calculations --- quantum technology --- chemical kinetics --- reaction rate --- RRKM theory --- master equation --- coordination complexes --- donor-acceptor systems --- partial electronic flows --- phase-current relations --- subsystem phases
Choose an application
This book is a collection of several unique articles on the current state of research on complex concentrated alloys, as well as their compelling future opportunities in wide ranging applications. Complex concentrated alloys consist of multiple principal elements and represent a new paradigm in structural alloy design. They show a range of exceptional properties that are unachievable in conventional alloys, including high strength–ductility combination, resistance to oxidation, corrosion/wear resistance, and excellent high-temperature properties. The research articles, reviews, and perspectives are intended to provide a wholistic view of this multidisciplinary subject of interest to scientists and engineers.
History of engineering & technology --- high-entropy alloy --- laser cladding --- microstructure --- slurry erosion --- Nb/SiC composite material --- hot pressing sintering --- mechanical property --- corrosion --- surface degradation --- wear --- high entropy alloys --- complex concentrated alloys --- potentiodynamic polarization --- erosion-corrosion --- slurry-erosion --- oxidation wear --- highly wear resistant coatings --- multi-principal element alloys --- computational models --- first-principles calculations --- molecular dynamics --- phases --- properties --- dislocation nucleation --- activation volume --- activation energy --- nano-indentation --- high/medium entropy alloys --- spark plasma sintering --- pressure --- mechanical properties --- high-entropy --- high pressure --- high pressure torsion --- diamond anvil cells --- CoCrFeMnNi high entropy alloys --- additive manufacturing --- corrosion behavior --- non-equilibrium microstructure --- micro-pores --- high-entropy alloys --- corrosion resistance --- wear resistance --- serrated flow --- thermal coarsening --- actuators --- phase transformation --- nanoporous metals and alloys --- AlCoCrFeNi2.1 --- CCA --- HEA --- aging --- precipitates --- tribology --- creep --- stress exponent --- data analysis --- high-entropy alloy --- laser cladding --- microstructure --- slurry erosion --- Nb/SiC composite material --- hot pressing sintering --- mechanical property --- corrosion --- surface degradation --- wear --- high entropy alloys --- complex concentrated alloys --- potentiodynamic polarization --- erosion-corrosion --- slurry-erosion --- oxidation wear --- highly wear resistant coatings --- multi-principal element alloys --- computational models --- first-principles calculations --- molecular dynamics --- phases --- properties --- dislocation nucleation --- activation volume --- activation energy --- nano-indentation --- high/medium entropy alloys --- spark plasma sintering --- pressure --- mechanical properties --- high-entropy --- high pressure --- high pressure torsion --- diamond anvil cells --- CoCrFeMnNi high entropy alloys --- additive manufacturing --- corrosion behavior --- non-equilibrium microstructure --- micro-pores --- high-entropy alloys --- corrosion resistance --- wear resistance --- serrated flow --- thermal coarsening --- actuators --- phase transformation --- nanoporous metals and alloys --- AlCoCrFeNi2.1 --- CCA --- HEA --- aging --- precipitates --- tribology --- creep --- stress exponent --- data analysis
Choose an application
The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.
Technology: general issues --- ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics --- ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics
Choose an application
This open access book brings out the state of the art on how informatics-based tools are used and expected to be used in nanomaterials research. There has been great progress in the area in which “big-data” generated by experiments or computations are fully utilized to accelerate discovery of new materials, key factors, and design rules. Data-intensive approaches play indispensable roles in advanced materials characterization. "Materials informatics" is the central paradigm in the new trend. "Nanoinformatics" is its essential subset, which focuses on nanostructures of materials such as surfaces, interfaces, dopants, and point defects, playing a critical role in determining materials properties. There have been significant advances in experimental and computational techniques to characterize individual atoms in nanostructures and to gain quantitative information. The collaboration of researchers in materials science and information science is growing actively and is creating a new trend in materials science and engineering. This book is open access under a CC BY license.
Materials science. --- Spectroscopy. --- Chemistry, Physical and theoretical. --- Nanoscale science. --- Nanoscience. --- Nanostructures. --- Microscopy. --- Nanotechnology. --- Materials Science. --- Theoretical and Computational Chemistry. --- Nanoscale Science and Technology. --- Characterization and Evaluation of Materials. --- Spectroscopy/Spectrometry. --- Spectroscopy and Microscopy. --- Nano science --- Nanoscale science --- Nanosciences --- Science --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Chemistry --- Analysis, Spectrum --- Spectra --- Spectrochemical analysis --- Spectrochemistry --- Spectroscopy --- Chemistry, Analytic --- Interferometry --- Optics --- Radiation --- Wave-motion, Theory of --- Absorption spectra --- Light --- Spectroscope --- Molecular technology --- Nanoscale technology --- High technology --- Analysis, Microscopic --- Light microscopy --- Micrographic analysis --- Microscope and microscopy --- Microscopic analysis --- Optical microscopy --- Nanoscience --- Physics --- Material science --- Physical sciences --- Qualitative --- Chemistry. --- Surfaces (Physics). --- Surface chemistry --- Surfaces (Technology) --- Spectrometry --- Analytical chemistry --- First-principles calculations --- Nanomaterials synthesis --- Machine learning --- Big data --- Atomic resolution characterization
Choose an application
The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.
Technology: general issues --- ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics
Choose an application
Over recent decades, the increase in computational resources, coupled with the popularity of competitive quantum mechanics alternatives (particularly DFT), has promoted the widespread penetration of quantum mechanics calculations into a variety of fields targeting the reactivity of molecules. This book presents a selection of original research papers and review articles illustrating diverse applications of quantum mechanics in the study of problems involving molecules and their reactivity.
Research & information: general --- Pyrophosphate --- electronic structure --- mechanical properties --- optical properties --- first-principles calculations --- chemical reactivity theory --- HSAB principle --- information theory --- quantum mechanics --- regional complementarity rule --- virial theorem --- free radical scavengers --- antioxidants --- fluoxetine --- depressive disorder --- major --- oxidative stress --- DFT calculations --- reactive oxygen species --- porphyrins, density functional theory --- DFT --- surfaces --- self-assembly --- scanning tunneling microscopy --- dispersion --- nanostructures --- solid state --- condensed phase --- [NiFeSe] hydrogenase --- quantum mechanics (QM)/molecular mechanics (MM), geometry optimizations --- vibrational frequency analyses --- Fourier transform infrared (FTIR) frequencies --- Quercetin molecule --- conformational mobility --- hydroxyl group --- transition state --- concerted rotation of the hydroxyl groups --- quantum-chemical calculations --- quantum technology --- chemical kinetics --- reaction rate --- RRKM theory --- master equation --- coordination complexes --- donor–acceptor systems --- partial electronic flows --- phase–current relations --- subsystem phases --- n/a --- donor-acceptor systems --- phase-current relations
Choose an application
This book is a collection of several unique articles on the current state of research on complex concentrated alloys, as well as their compelling future opportunities in wide ranging applications. Complex concentrated alloys consist of multiple principal elements and represent a new paradigm in structural alloy design. They show a range of exceptional properties that are unachievable in conventional alloys, including high strength–ductility combination, resistance to oxidation, corrosion/wear resistance, and excellent high-temperature properties. The research articles, reviews, and perspectives are intended to provide a wholistic view of this multidisciplinary subject of interest to scientists and engineers.
History of engineering & technology --- high-entropy alloy --- laser cladding --- microstructure --- slurry erosion --- Nb/SiC composite material --- hot pressing sintering --- mechanical property --- corrosion --- surface degradation --- wear --- high entropy alloys --- complex concentrated alloys --- potentiodynamic polarization --- erosion-corrosion --- slurry-erosion --- oxidation wear --- highly wear resistant coatings --- multi-principal element alloys --- computational models --- first-principles calculations --- molecular dynamics --- phases --- properties --- dislocation nucleation --- activation volume --- activation energy --- nano-indentation --- high/medium entropy alloys --- spark plasma sintering --- pressure --- mechanical properties --- high-entropy --- high pressure --- high pressure torsion --- diamond anvil cells --- CoCrFeMnNi high entropy alloys --- additive manufacturing --- corrosion behavior --- non-equilibrium microstructure --- micro-pores --- high-entropy alloys --- corrosion resistance --- wear resistance --- serrated flow --- thermal coarsening --- actuators --- phase transformation --- nanoporous metals and alloys --- AlCoCrFeNi2.1 --- CCA --- HEA --- aging --- precipitates --- tribology --- creep --- stress exponent --- data analysis --- n/a
Choose an application
This book is a collection of several unique articles on the current state of research on complex concentrated alloys, as well as their compelling future opportunities in wide ranging applications. Complex concentrated alloys consist of multiple principal elements and represent a new paradigm in structural alloy design. They show a range of exceptional properties that are unachievable in conventional alloys, including high strength–ductility combination, resistance to oxidation, corrosion/wear resistance, and excellent high-temperature properties. The research articles, reviews, and perspectives are intended to provide a wholistic view of this multidisciplinary subject of interest to scientists and engineers.
high-entropy alloy --- laser cladding --- microstructure --- slurry erosion --- Nb/SiC composite material --- hot pressing sintering --- mechanical property --- corrosion --- surface degradation --- wear --- high entropy alloys --- complex concentrated alloys --- potentiodynamic polarization --- erosion-corrosion --- slurry-erosion --- oxidation wear --- highly wear resistant coatings --- multi-principal element alloys --- computational models --- first-principles calculations --- molecular dynamics --- phases --- properties --- dislocation nucleation --- activation volume --- activation energy --- nano-indentation --- high/medium entropy alloys --- spark plasma sintering --- pressure --- mechanical properties --- high-entropy --- high pressure --- high pressure torsion --- diamond anvil cells --- CoCrFeMnNi high entropy alloys --- additive manufacturing --- corrosion behavior --- non-equilibrium microstructure --- micro-pores --- high-entropy alloys --- corrosion resistance --- wear resistance --- serrated flow --- thermal coarsening --- actuators --- phase transformation --- nanoporous metals and alloys --- AlCoCrFeNi2.1 --- CCA --- HEA --- aging --- precipitates --- tribology --- creep --- stress exponent --- data analysis --- n/a
Choose an application
The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.
ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics
Listing 1 - 10 of 16 | << page >> |
Sort by
|