Narrow your search

Library

KU Leuven (7)

VIVES (7)

FARO (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

Vlaams Parlement (6)

More...

Resource type

book (17)


Language

English (17)


Year
From To Submit

2022 (5)

2021 (6)

2020 (4)

2006 (1)

2000 (1)

Listing 1 - 10 of 17 << page
of 2
>>
Sort by

Book
Lightning Modeling and Its Effects on Electric Infrastructures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

When it comes to dealing with high voltages or issues of high electric currents, infrastructure security and people’s safety are of paramount importance. These kinds of phenomena have dangerous consequences, therefore studies concerning the effects of lightning are crucial. The normal operation of transmission and distribution systems is greatly affected by lightning, which is one of the major causes of power interruptions: direct or nearby indirect strikes can cause flashovers in overhead transmission and distribution lines, resulting in over voltages on the line conductors. Contributions to this Special Issue have mainly focused on modelling lightning activity, investigating physical causes, and discussing and testing mathematical models for the electromagnetic fields associated with lighting phenomena. In this framework, two main topics have emerged: 1) the interaction between lightning phenomena and electrical infrastructures, such as wind turbines and overhead lines; and 2) the computation of lightning electromagnetic fields in the case of particular configuration, considering a negatively charged artificial thunderstorm or considering a complex terrain with arbitrary topography

Keywords

Technology: general issues --- lightning --- lightning protection system --- wind turbine blades --- ANSYS workbench --- graphics processing unit (GPU) --- OpenACC (open accelerators) --- finite difference time domain (FDTD) --- lightning magnetic fields --- electromagnetic field --- analytical formula --- corona discharge --- lightning protection --- electromagnetic pulse --- lightning-induced voltages --- numerical codes --- distribution lines --- lightning-induced overvoltages --- grounding modeling --- soil resistivity --- artificial thunderstorm cell --- upward streamer discharges --- electromagnetic radiation spectrum --- wavelet --- transmission line monitoring system --- model element --- simulation --- corona --- lightning surge --- overhead line --- transient calculation --- lightning --- lightning protection system --- wind turbine blades --- ANSYS workbench --- graphics processing unit (GPU) --- OpenACC (open accelerators) --- finite difference time domain (FDTD) --- lightning magnetic fields --- electromagnetic field --- analytical formula --- corona discharge --- lightning protection --- electromagnetic pulse --- lightning-induced voltages --- numerical codes --- distribution lines --- lightning-induced overvoltages --- grounding modeling --- soil resistivity --- artificial thunderstorm cell --- upward streamer discharges --- electromagnetic radiation spectrum --- wavelet --- transmission line monitoring system --- model element --- simulation --- corona --- lightning surge --- overhead line --- transient calculation

Higher order FDTD schemes for waveguide and antenna structures
Authors: ---
ISBN: 1598290290 9781598290295 1598290282 9781598290288 Year: 2006 Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) Morgan & Claypool Publishers

Loading...
Export citation

Choose an application

Bookmark

Abstract

This publication provides a comprehensive and systematically organized coverage of higher order finite-difference time-domain or FDTD schemes, demonstrating their potential role as a powerful modeling tool in computational electromagnetics. Special emphasis is drawn on the analysis of contemporary waveguide and antenna structures. Acknowledged as a significant breakthrough in the evolution of the original Yee's algorithm, the higher order FDTD operators remain the subject of an ongoing scientific research. Among their indisputable merits, one can distinguish the enhanced levels of accuracy even for coarse grid resolutions, the fast convergence rates, and the adjustable stability. In fact, as the fabrication standards of modern systems get stricter, it is apparent that such properties become very appealing for the accomplishment of elaborate and credible designs.


Book
Lightning Modeling and Its Effects on Electric Infrastructures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

When it comes to dealing with high voltages or issues of high electric currents, infrastructure security and people’s safety are of paramount importance. These kinds of phenomena have dangerous consequences, therefore studies concerning the effects of lightning are crucial. The normal operation of transmission and distribution systems is greatly affected by lightning, which is one of the major causes of power interruptions: direct or nearby indirect strikes can cause flashovers in overhead transmission and distribution lines, resulting in over voltages on the line conductors. Contributions to this Special Issue have mainly focused on modelling lightning activity, investigating physical causes, and discussing and testing mathematical models for the electromagnetic fields associated with lighting phenomena. In this framework, two main topics have emerged: 1) the interaction between lightning phenomena and electrical infrastructures, such as wind turbines and overhead lines; and 2) the computation of lightning electromagnetic fields in the case of particular configuration, considering a negatively charged artificial thunderstorm or considering a complex terrain with arbitrary topography


Book
Lightning Modeling and Its Effects on Electric Infrastructures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

When it comes to dealing with high voltages or issues of high electric currents, infrastructure security and people’s safety are of paramount importance. These kinds of phenomena have dangerous consequences, therefore studies concerning the effects of lightning are crucial. The normal operation of transmission and distribution systems is greatly affected by lightning, which is one of the major causes of power interruptions: direct or nearby indirect strikes can cause flashovers in overhead transmission and distribution lines, resulting in over voltages on the line conductors. Contributions to this Special Issue have mainly focused on modelling lightning activity, investigating physical causes, and discussing and testing mathematical models for the electromagnetic fields associated with lighting phenomena. In this framework, two main topics have emerged: 1) the interaction between lightning phenomena and electrical infrastructures, such as wind turbines and overhead lines; and 2) the computation of lightning electromagnetic fields in the case of particular configuration, considering a negatively charged artificial thunderstorm or considering a complex terrain with arbitrary topography


Book
Simulation and Modeling of Nanomaterials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies.

Keywords

single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance


Book
Simulation and Modeling of Nanomaterials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies.

Keywords

Research & information: general --- Physics --- single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance --- single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

History of engineering & technology --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

Research & information: general --- Biology, life sciences --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation


Book
High Voltage Engineering and Applications
Author:
ISBN: 3039287176 3039287168 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of recent publications from researchers all over the globe in the broad area of high-voltage engineering. The presented research papers cover both experimental and simulation studies, with a focus on topics related to insulation monitoring using state-of-the-art sensors and advanced machine learning algorithms. Special attention was given in the Special Issue to partial discharge monitoring as one of the most important techniques in insulation condition assessment. Moreover, this Special Issue contains several articles which focus on different modeling techniques that help researchers to better evaluate the condition of insulation systems. Different power system assets are addressed in this book, including transformers, outdoor insulators, underground cables, and gas-insulated substations.

Keywords

artificial neural network --- simulation --- high-frequency --- artificial flashover tests --- wide bandgap power modules --- tracking --- electrical field strength --- fast-rise square wave voltages --- FDTD simulation --- cable joint --- corona discharge --- feature selection --- post insulator --- earthing systems --- wind speed --- surface discharge --- oil/paper insulation --- oil-paper insulation --- high-magnitude currents and impulse polarity --- UFVM --- Tettex 9520 --- electrical tree --- flashover characteristics --- composite insulator --- partial discharge --- numerical modeling --- saline mechanism --- thermal parameters --- space charge density --- seasonal --- ion flow field --- denoising --- DDX 9121b --- temperature --- transformer asset management --- cavity discharge --- space/interface charge --- insulation health index --- heat transfer model --- leakage current --- machine learning --- partial discharges (PD) --- RF signal --- flashover --- high impulse conditions --- grounding electrodes --- generalized finite difference time domain --- curve fitting --- grounding --- plasma discharge --- outdoor insulators --- flashover dynamic model --- wavelet transform --- degradation --- thermal properties --- bipolar charge transport model --- UHF sensor --- cable --- random walk theory --- tracking test setup --- GIL --- pressure --- modelling --- non-uniform pollution between windward and leeward sides --- calibrator --- secondary arc --- polymeric insulation --- optical-UHF integrated detection --- shoreline --- dry band arcing --- photoelectric fusion pattern --- DDX 8003 --- XLPE --- silicone gel --- partial discharge modeling --- electric field analysis --- NSCT --- electrode’s geometry --- gas --- Comsol Multiphysics --- fast-impulses --- laying modes --- ageing --- cable ampacity --- residual resistance formulation --- finite element analysis --- thermal effect --- hydrophobicity --- soil resistivity --- charge simulation method --- short-circuit discharge --- dry band formation

Listing 1 - 10 of 17 << page
of 2
>>
Sort by