Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
Modeling and Simulation of Carbon Emission Related Issues
Author:
ISBN: 3039213121 3039213113 9783039213122 Year: 2019 Publisher: Basel, Switzerland : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon emissions reached an all-time high in 2018, when global carbon dioxide emissions from burning fossil fuels increased by about 2.7%, after a 1.6% increase in 2017. Thus, we need to pay special attention to carbon emissions and work out possible solutions if we still want to meet the targets of the Paris climate agreement. This Special Issue collects 16 carbon emissions-related papers (including 5 that are carbon tax-related) and 4 energy-related papers using various methods or models, such as the input-output model, decoupling analysis, life cycle impact analysis (LCIA), relational analysis model, generalized Divisia index model (GDIM), forecasting model, three-indicator allocation model, mathematical programming, real options model, multiple linear regression, etc. The research studies come from China, Taiwan, Brazil, Thailand, and United States. These researches involved various industries such as agricultural industry, transportation industry, power industry, tire industry, textile industry, wave energy industry, natural gas industry, and petroleum industry. Although this Special Issue does not fully solve our concerns, it still provides abundant material for implementing energy conservation and carbon emissions reduction. However, there are still many issues regarding the problems caused by global warming that require research.

Keywords

shale gas --- n/a --- Tapio’s model --- 1)) --- tea --- VARIMAX-ECM model --- wave energy converter --- error correction mechanism model --- low-carbon agriculture --- hybrid ship power systems --- greenhouse gas emissions --- STIRPAT model --- textile industry --- carbon tax --- refined oil distribution --- pushback control --- takeoff rate --- economic growth --- generalized regression neural network (GRNN) --- Industry 4.0 --- HOMER software --- population growth --- Markov forecasting model --- household consumption --- life cycle assessment --- green quality management --- agricultural-related sectors --- non-energy uses of fossil fuels --- investment under uncertainty --- CO2 emissions forecasting --- decoupling analysis --- CO2 emissions --- quotas allocation --- carbon price fluctuation --- final energy consumption --- ethylene supply --- household CO2 emissions (HCEs) --- green transportation --- Li-ion battery --- Activity-Based Costing (ABC) --- decoupling elasticity --- causal factors --- renewable energy --- per capita household CO2 emissions (PHCEs) --- shipping --- input–output model --- carbon intensity target --- climate change --- Monte Carlo method --- CLA Model --- energy intensity --- total carbon emissions --- mathematical programming --- sustainable development --- Generalized Divisia Index --- carbon trading --- influence factor --- tire industry --- socio-economic scenarios --- hybrid genetic algorithm --- economic growth and the environment --- non-linear programming --- environmental impact --- capacity expansion --- product-mix decision model --- influencing factors --- scenario forecast --- energy structure --- China --- carbon emissions --- inventory routing problem --- green manufacturing --- fairness --- power industry --- activity-based costing (ABC) --- aircraft --- electric power industry --- taxi time --- real options analysis --- carbon footprint --- LT-ARIMAXS model --- carbon intensity --- gray model (GM (1 --- reducing carbon emissions --- sustainable agriculture --- long-term --- Tapio's model --- input-output model


Book
Sustainable Building and Indoor Air Quality
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue addresses a topic of great contemporary relevance; in developed countries, most of peoples’ time is spent indoors and, depending on each person, the presence in the home ranges from 60% to 90% of the day, and 30% of that time is spent sleeping. Taking into account these data, indoor residential environments have a direct influence on human health. In addition to this, in developing countries, significant levels of indoor pollution make housing unsafe, with a detrimental impact on the health of inhabitants. Housing is therefore a key health factor for people all over the world, and various parameters such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, among others, can contribute to healthy architecture, and the conditions that can result from the poor application of these parameters.

Keywords

Technology: general issues --- vernacular architecture --- sustainability --- energy efficiency --- history --- statistics --- society --- acoustics --- environmental quality --- learning space --- occupant comfort --- sustainable architecture --- sustainable building --- visual comfort --- thermal comfort --- ventilation comfort --- VOCs --- polymer-based items --- indoor air quality --- test emission chamber --- exposure scenario --- natural lighting --- artificial lighting --- indoor lighting design --- chronodisruption --- circadian rhythms --- daylighting --- sustainable lighting design --- LED luminaires --- indoor environment quality --- classroom lighting --- sustainable development --- desalination --- reverse osmosis --- renewable energies --- environmental impacts --- decision support systems --- types of contract --- in-vehicle air quality --- pollution model --- thermal environment --- solar radiation --- VOCs exposure --- CFD --- environmental health --- building energy simulation --- water flow glazing --- experimental validation --- schools --- heat perception --- user’s perception --- qualitative technique --- POE --- weather file management --- weather datasets --- weather stations --- sensitivity analysis of weather parameters --- thermal zone temperature --- building energy management --- unitized facade --- Water Flow Glazing --- mean radiant temperature --- final energy consumption --- Artificial Neural Network (ANN) --- Global Data Assimilation System (GDAS) --- Numerical Weather Prediction (NWP) --- photovoltaic power --- weather data --- facility management --- construction materials --- “smelly buildings” --- Belgrade --- Serbia --- Mexico --- energy simulation --- building energy model --- Open Studio --- SGSAVE --- NOM-020-ENER-2011 --- climate zoning --- traditional construction systems --- social housing --- verification method --- climate change --- global warming --- carbon footprint --- GHG emissions --- climate emergency --- hydrogen --- PEM fuel cells --- cogeneration --- building sustainability --- energy saving --- hygrothermal comfort --- indoor green --- vertical greenery --- cost-benefit-ratio --- sick leave --- absenteeism --- alternative quantification method


Book
Sustainable Building and Indoor Air Quality
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue addresses a topic of great contemporary relevance; in developed countries, most of peoples’ time is spent indoors and, depending on each person, the presence in the home ranges from 60% to 90% of the day, and 30% of that time is spent sleeping. Taking into account these data, indoor residential environments have a direct influence on human health. In addition to this, in developing countries, significant levels of indoor pollution make housing unsafe, with a detrimental impact on the health of inhabitants. Housing is therefore a key health factor for people all over the world, and various parameters such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, among others, can contribute to healthy architecture, and the conditions that can result from the poor application of these parameters.

Keywords

vernacular architecture --- sustainability --- energy efficiency --- history --- statistics --- society --- acoustics --- environmental quality --- learning space --- occupant comfort --- sustainable architecture --- sustainable building --- visual comfort --- thermal comfort --- ventilation comfort --- VOCs --- polymer-based items --- indoor air quality --- test emission chamber --- exposure scenario --- natural lighting --- artificial lighting --- indoor lighting design --- chronodisruption --- circadian rhythms --- daylighting --- sustainable lighting design --- LED luminaires --- indoor environment quality --- classroom lighting --- sustainable development --- desalination --- reverse osmosis --- renewable energies --- environmental impacts --- decision support systems --- types of contract --- in-vehicle air quality --- pollution model --- thermal environment --- solar radiation --- VOCs exposure --- CFD --- environmental health --- building energy simulation --- water flow glazing --- experimental validation --- schools --- heat perception --- user’s perception --- qualitative technique --- POE --- weather file management --- weather datasets --- weather stations --- sensitivity analysis of weather parameters --- thermal zone temperature --- building energy management --- unitized facade --- Water Flow Glazing --- mean radiant temperature --- final energy consumption --- Artificial Neural Network (ANN) --- Global Data Assimilation System (GDAS) --- Numerical Weather Prediction (NWP) --- photovoltaic power --- weather data --- facility management --- construction materials --- “smelly buildings” --- Belgrade --- Serbia --- Mexico --- energy simulation --- building energy model --- Open Studio --- SGSAVE --- NOM-020-ENER-2011 --- climate zoning --- traditional construction systems --- social housing --- verification method --- climate change --- global warming --- carbon footprint --- GHG emissions --- climate emergency --- hydrogen --- PEM fuel cells --- cogeneration --- building sustainability --- energy saving --- hygrothermal comfort --- indoor green --- vertical greenery --- cost-benefit-ratio --- sick leave --- absenteeism --- alternative quantification method


Book
Sustainable Building and Indoor Air Quality
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue addresses a topic of great contemporary relevance; in developed countries, most of peoples’ time is spent indoors and, depending on each person, the presence in the home ranges from 60% to 90% of the day, and 30% of that time is spent sleeping. Taking into account these data, indoor residential environments have a direct influence on human health. In addition to this, in developing countries, significant levels of indoor pollution make housing unsafe, with a detrimental impact on the health of inhabitants. Housing is therefore a key health factor for people all over the world, and various parameters such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, among others, can contribute to healthy architecture, and the conditions that can result from the poor application of these parameters.

Keywords

Technology: general issues --- vernacular architecture --- sustainability --- energy efficiency --- history --- statistics --- society --- acoustics --- environmental quality --- learning space --- occupant comfort --- sustainable architecture --- sustainable building --- visual comfort --- thermal comfort --- ventilation comfort --- VOCs --- polymer-based items --- indoor air quality --- test emission chamber --- exposure scenario --- natural lighting --- artificial lighting --- indoor lighting design --- chronodisruption --- circadian rhythms --- daylighting --- sustainable lighting design --- LED luminaires --- indoor environment quality --- classroom lighting --- sustainable development --- desalination --- reverse osmosis --- renewable energies --- environmental impacts --- decision support systems --- types of contract --- in-vehicle air quality --- pollution model --- thermal environment --- solar radiation --- VOCs exposure --- CFD --- environmental health --- building energy simulation --- water flow glazing --- experimental validation --- schools --- heat perception --- user’s perception --- qualitative technique --- POE --- weather file management --- weather datasets --- weather stations --- sensitivity analysis of weather parameters --- thermal zone temperature --- building energy management --- unitized facade --- Water Flow Glazing --- mean radiant temperature --- final energy consumption --- Artificial Neural Network (ANN) --- Global Data Assimilation System (GDAS) --- Numerical Weather Prediction (NWP) --- photovoltaic power --- weather data --- facility management --- construction materials --- “smelly buildings” --- Belgrade --- Serbia --- Mexico --- energy simulation --- building energy model --- Open Studio --- SGSAVE --- NOM-020-ENER-2011 --- climate zoning --- traditional construction systems --- social housing --- verification method --- climate change --- global warming --- carbon footprint --- GHG emissions --- climate emergency --- hydrogen --- PEM fuel cells --- cogeneration --- building sustainability --- energy saving --- hygrothermal comfort --- indoor green --- vertical greenery --- cost-benefit-ratio --- sick leave --- absenteeism --- alternative quantification method

Listing 1 - 4 of 4
Sort by