Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels.
Technology: general issues --- History of engineering & technology --- collision avoidance --- ship domain --- fuzzy inference --- collision risk --- early warning system --- marine vessel --- tracking controller --- stability --- functional --- optimal damping --- fin stabilizer --- ship turning --- heel/roll reduction --- L2-gain --- uncertainty --- non-linearity --- ship motion control --- path-following --- guidance algorithm --- nonlinear feedback --- AIS Data --- trajectory prediction --- waterway transportation --- neural networks --- autonomous navigation --- multi-joint autonomous underwater vehicle (MJ-AUV) --- 3-dimensional modeling --- LQR --- LESO --- multicriteria route planning --- genetic algorithm --- particle swarm optimization --- oceanic meteorological routing --- cooperative game theory --- supply chain management --- supply disruption --- unmanned surface vehicle --- Guidance, Navigation and Control --- course keeping --- adaptive sliding mode --- unmanned surface vehicle (USV) --- system identification --- traditional neural network --- physics-informed neural network --- zigzag test --- n/a
Choose an application
The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.
History of engineering & technology --- humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot --- humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot
Choose an application
The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.
History of engineering & technology --- humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot --- n/a
Choose an application
The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.
humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot --- n/a
Listing 1 - 4 of 4 |
Sort by
|