Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Ce travail porte sur la mise en œuvre d’une solution nutritive dans un procédé de fertirrigation. La solution nutritive apporte le fer solubilisé par des chélates inorganiques. Il est ajouté à une solution nutritive contenant déjà tous les ions nécessaires aux plantes excepté l’intégralité du fer et une partie du phosphate. Le présent travail a pour but de déterminer les conditions de mélange qu’il faut atteindre pour pouvoir éviter des surconcentrations locales au point d’injection qui pourraient induire un précipité de phosphate de calcium. L’apparition du précipité est due à l’augmentation de pH. De fait, le pH de la solution va influencer la précipitation des phosphates de calcium. Il existe trois mécanismes de mélange : le macromélange, le mésomélange et le micromélange. Déterminé par des paramètres hydrodynamiques globaux et locaux. Comme chaque situation étant différentes, le mécanisme de mélange limitant a été déterminé dans le cadre du présent travail. Une première approximation des valeurs des paramètres hydrodynamiques locaux à respecter pour ne pas avoir de surconcentrations au point d’injection a été déterminée.
Courbes de titrage --- Précipitation --- Temps de mélange --- Polyphosphates --- Complexation --- Fertirrigation --- Ingénierie, informatique & technologie > Ingénierie chimique
Choose an application
Ce projet a été réalisé au compte de Prayon, un des leaders mondiaux de la chimie des phosphates. L’objectif de ce travail est de mettre en place une méthodologie d’étude et d’analyse pour les marchés qui seront mis en avant lors de l’aboutissement de son projet Heatmap. Actuellement, l’entreprise souhaite rebâtir sa stratégie et a donc lancé le développement de sa Heatmap pour y parvenir. Cela aura pour but de mettre en avant les marchés opportuns pour l’entreprise afin d’y mener une analyse plus approfondie et de travailler sur une stratégie adéquate. La méthodologie mise en place à travers ce travail pourrait servir de marche à suivre pour les analyses qui découleront donc de la Heatmap. Dans le cadre de ce mémoire, le marché du MKP horticole a été au centre de l’analyse. Ce dernier, jugé opportun par l’équipe commerciale, a servi de test à cette méthodologie. La méthodologie employée a mené à une analyse de l’industrie en 4 parties. Dans un premier temps, une vision globale de l’industrie des fertilisants hydrosolubles a été effectuée. Deuxièmement, des interviews pour connaître les facteurs clés de succès du MKP horticole ont été menées auprès des clients de l’entreprise. Ensuite, un benchmarking concurrentiel a été fait. Ces 3 étapes ont permis la réalisation de l’analyse SWOT de Prayon. Sur base de cette dernière, des recommandations ont ensuite été proposées, avant de conclure le travail.
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
History of engineering & technology --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill-Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching-learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill-Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching-learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
History of engineering & technology --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill–Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching–learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- n/a --- Hill-Tsai failure criterion --- teaching-learning
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill–Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching–learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- n/a --- Hill-Tsai failure criterion --- teaching-learning
Listing 1 - 5 of 5 |
Sort by
|