Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The Special Issue on “Synthesis and Characterization of Ferroelectrics” reports on several physical properties of ferroelectric materials and their technological aspects. Different substitution mechanisms provide ideas toward future improvement of lead-free (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics, including the electrocaloric effect, fluorescence, and energy storage. It is established that axial and radial element segregation differently influences electrical properties of 0.68Pb(Mg1/3Nb2/3)0.32PbTiO3 (PMN-32PT for short) single crystals. While the electrical properties along the axial direction strongly depend on the PbTiO3 content, the electrical properties along the axial direction are mainly determined by the ratio of Nb and Mg. On the other hand, Fe-substitution of PMN-32PT crystals lead to an enhancement of the coercive field due to wall pinning induced by charged defect dipoles. It is also found, that capacitors based on Pt/Na0.5Bi0.5TiO3/La0.5Sr0.5CoO3 thin films display good fatigue resistance and retention. Another lead-free thin film capacitor fabricated from Ba0.3Sr0.7Zr0.18Ti0.82 features a low leakage current density and high breakdown strength. Such capacitors are essential for energy storage. Furthermore, an enhanced electrocaloric effect on 0.73Pb(Mg1/3Nb2/3)0.27PbTiO3 single crystals is demonstrated. This effect is promising for novel solid-state cooling systems.
Research & information: general --- PMN-32PT --- characterization --- segregation --- Bridgman technique --- ferroelectric materials --- piezoelectric --- ceramic --- lead-free --- PMN-32PT single crystal --- acceptor doping --- charged defects --- dielectric relaxation --- electrical conduction --- NBT epitaxial film --- ferroelectric properties --- ultraviolet light --- BSZT thin films --- capacitance properties --- RF magnetron sputtering --- PMN-PT --- single crystals --- P-E hysteresis loop --- electrocaloric effect --- Maxwell relation --- PMN-32PT --- characterization --- segregation --- Bridgman technique --- ferroelectric materials --- piezoelectric --- ceramic --- lead-free --- PMN-32PT single crystal --- acceptor doping --- charged defects --- dielectric relaxation --- electrical conduction --- NBT epitaxial film --- ferroelectric properties --- ultraviolet light --- BSZT thin films --- capacitance properties --- RF magnetron sputtering --- PMN-PT --- single crystals --- P-E hysteresis loop --- electrocaloric effect --- Maxwell relation
Choose an application
The Special Issue on “Synthesis and Characterization of Ferroelectrics” reports on several physical properties of ferroelectric materials and their technological aspects. Different substitution mechanisms provide ideas toward future improvement of lead-free (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics, including the electrocaloric effect, fluorescence, and energy storage. It is established that axial and radial element segregation differently influences electrical properties of 0.68Pb(Mg1/3Nb2/3)0.32PbTiO3 (PMN-32PT for short) single crystals. While the electrical properties along the axial direction strongly depend on the PbTiO3 content, the electrical properties along the axial direction are mainly determined by the ratio of Nb and Mg. On the other hand, Fe-substitution of PMN-32PT crystals lead to an enhancement of the coercive field due to wall pinning induced by charged defect dipoles. It is also found, that capacitors based on Pt/Na0.5Bi0.5TiO3/La0.5Sr0.5CoO3 thin films display good fatigue resistance and retention. Another lead-free thin film capacitor fabricated from Ba0.3Sr0.7Zr0.18Ti0.82 features a low leakage current density and high breakdown strength. Such capacitors are essential for energy storage. Furthermore, an enhanced electrocaloric effect on 0.73Pb(Mg1/3Nb2/3)0.27PbTiO3 single crystals is demonstrated. This effect is promising for novel solid-state cooling systems.
Research & information: general --- PMN-32PT --- characterization --- segregation --- Bridgman technique --- ferroelectric materials --- piezoelectric --- ceramic --- lead-free --- PMN-32PT single crystal --- acceptor doping --- charged defects --- dielectric relaxation --- electrical conduction --- NBT epitaxial film --- ferroelectric properties --- ultraviolet light --- BSZT thin films --- capacitance properties --- RF magnetron sputtering --- PMN-PT --- single crystals --- P–E hysteresis loop --- electrocaloric effect --- Maxwell relation --- n/a --- P-E hysteresis loop
Choose an application
The Special Issue on “Synthesis and Characterization of Ferroelectrics” reports on several physical properties of ferroelectric materials and their technological aspects. Different substitution mechanisms provide ideas toward future improvement of lead-free (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics, including the electrocaloric effect, fluorescence, and energy storage. It is established that axial and radial element segregation differently influences electrical properties of 0.68Pb(Mg1/3Nb2/3)0.32PbTiO3 (PMN-32PT for short) single crystals. While the electrical properties along the axial direction strongly depend on the PbTiO3 content, the electrical properties along the axial direction are mainly determined by the ratio of Nb and Mg. On the other hand, Fe-substitution of PMN-32PT crystals lead to an enhancement of the coercive field due to wall pinning induced by charged defect dipoles. It is also found, that capacitors based on Pt/Na0.5Bi0.5TiO3/La0.5Sr0.5CoO3 thin films display good fatigue resistance and retention. Another lead-free thin film capacitor fabricated from Ba0.3Sr0.7Zr0.18Ti0.82 features a low leakage current density and high breakdown strength. Such capacitors are essential for energy storage. Furthermore, an enhanced electrocaloric effect on 0.73Pb(Mg1/3Nb2/3)0.27PbTiO3 single crystals is demonstrated. This effect is promising for novel solid-state cooling systems.
PMN-32PT --- characterization --- segregation --- Bridgman technique --- ferroelectric materials --- piezoelectric --- ceramic --- lead-free --- PMN-32PT single crystal --- acceptor doping --- charged defects --- dielectric relaxation --- electrical conduction --- NBT epitaxial film --- ferroelectric properties --- ultraviolet light --- BSZT thin films --- capacitance properties --- RF magnetron sputtering --- PMN-PT --- single crystals --- P–E hysteresis loop --- electrocaloric effect --- Maxwell relation --- n/a --- P-E hysteresis loop
Choose an application
Ferroic materials, including ferroelectric, piezoelectric, magnetic, and multiferroic materials, are receiving great scientific attention due to their rich physical properties. They have shown their great advantages in diverse fields of application, such as information storage, sensor/actuator/transducers, energy harvesters/storage, and even environmental pollution control. At present, ferroic nanostructures have been widely acknowledged to advance and improve currently existing electronic devices as well as to develop future ones. This Special Issue covers the characterization of crystal and microstructure, the design and tailoring of ferro/piezo/dielectric, magnetic, and multiferroic properties, and the presentation of related applications. These papers present various kinds of nanomaterials, such as ferroelectric/piezoelectric thin films, dielectric storage thin film, dielectric gate layer, and magnonic metamaterials. These nanomaterials are expected to have applications in ferroelectric non-volatile memory, ferroelectric tunneling junction memory, energy-storage pulsed-power capacitors, metal oxide semiconductor field-effect-transistor devices, humidity sensors, environmental pollutant remediation, and spin-wave devices. The purpose of this Special Issue is to communicate the recent developments in research on nanoscale ferroic materials.
Research & information: general --- Physics --- PMN-PT thin films --- preferred orientation --- ferroelectric property --- dielectric property --- flexible --- film capacitor --- Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 --- energy storage properties --- MOS capacitors --- Sm2O3 high-k gate dielectric --- atomic layer deposition --- conduction mechanisms --- interface state density --- BSFM --- phase transition --- aging --- electrical properties --- BiOCl/NaNbO3 --- heterojunction --- piezocatalysis --- photocatalysis --- degradation --- humidity sensing --- impedance-type sensors --- organometallic halide perovskite --- HZO --- PEALD --- ferroelectric memory --- deposition temperature --- film density --- remanent polarization --- fatigue endurance --- CBTi-BFO --- fine grain --- electric breakdown strength --- recoverable energy storage --- spin waves --- Dzyaloshinskii–Moriya interaction --- ferromagnetism --- spintronics --- two-dimensional materials --- ferroelectric properties --- scanning probe microscope --- negative piezoelectricity --- phase segregation --- multiferroic materials --- anisotropy --- DyFeO3 --- magnetoelectric coupling --- pulsed high magnetic field --- DM interaction --- crystalline YFeO3 --- magnetic properties --- enhanced weak ferromagnetism --- exchange interactions
Listing 1 - 4 of 4 |
Sort by
|