Listing 1 - 10 of 22 | << page >> |
Sort by
|
Choose an application
Experimental design. --- factorial design --- split-plot design --- response surface methode --- design of experiments --- variantie --- lineaire regressie --- (zie ook: doe)
Choose an application
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
statistiek --- Mathematical statistics --- Experimental design. --- 519.242 --- 519.22 --- design of experiments --- variantie --- factorial design --- lineaire regressie --- response surface methode --- split-plot design --- Experimental design. Optimal designs. Block designs --- Statistical theory. Statistical models. Mathematical statistics in general --- (zie ook: doe) --- 519.22 Statistical theory. Statistical models. Mathematical statistics in general --- 519.242 Experimental design. Optimal designs. Block designs --- Experimental design --- Design of experiments --- Statistical design --- Mathematical optimization --- Research --- Science --- Statistical decision --- Statistics --- Analysis of means --- Analysis of variance --- Experiments --- Methodology
Choose an application
This book focuses on the design of polymeric delivery systems for biomedical and nanomedicine applications as well as on understanding how such biomaterials interact in the physiological environment. The reader will find an encompassing view on the state-of-the-art of polymeric carriers, showing how current research deals with new stimuli-responsive systems for cancer therapies and biomedical challenges, namely overcoming the skin barrier. The published papers cover topics ranging from novel production methods and insights on hybrid polymers to applications as diverse as nanoparticles, hydrogels and microneedles for antifungal skin therapy, peptide and siRNA delivery, enhanced skin absorption of bioactive molecules, and anticancer therapy. The book comprises one review paper and nine research papers.
Technology: general issues --- osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box–Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals --- n/a --- Box-Behnken design
Choose an application
Electromembrane processes offer a multitude of applications, allowing for the recovery of water, other products, and energy. This book is a collection of contributions on recent advancements in electromembrane processes attained via experiments and/or models. The first paper is a comprehensive review article on the applications of electrodialysis for wastewater treatment, highlighting current status, technical challenges, and key points for future perspectives. The second paper focuses on ZSM-5 zeolite/PVA mixed matrix CEMs with high monovalent permselectivity for recovering either acid or Li+. The third paper regards direct numerical simulations of electroconvection in an electrodialysis dilute channel with forced flow under potentiodynamic and galvanodynamic regimes. The fourth paper investigates the reasons for the formation and properties of soliton-like charge waves in overlimiting conditions. The fifth paper focuses on the characterization of AEMs functionalized by surface modification via poly(acrylic) acid yielding monovalent permselectivity for reverse electrodialysis. In the sixth paper, CFD simulations of reverse electrodialysis systems are performed. The seventh paper proposes an integrated membrane process, including electrochemical intercalation–deintercalation, for the preparation of Li2CO3 from brine with a high Mg2+/Li+ mass ratio. Finally, the eighth paper is a perspective article devoted to the acid–base flow battery with monopolar and bipolar membranes.
Technology: general issues --- ion-exchange membrane --- electrodialysis --- current-voltage curve --- electroconvection --- potentiodynamic regime --- galvanodynamic regime --- numerical simulation --- ZSM-5 zeolite --- monovalent cation separation --- mixed matrix membrane --- anion exchange membranes --- poly(acrylic) acid modification --- monovalent permselective membranes --- antifouling strategies --- reverse electrodialysis --- electro-membrane process --- electrodialysis reversal --- bipolar membrane electrodialysis --- selectrodialysis --- electrodialysis metathesis --- electrodeionisation --- monovalent selective membranes --- water reuse --- brine valorisation --- mathematical modelling --- using overlimiting current modes --- membrane systems --- cation-exchange membrane --- effect of the breakdown of the space charge --- computational fluid dynamics --- power density --- factorial design --- membrane process --- Li2CO3 --- electrochemical intercalation deintercalation --- high Mg/Li brine --- flow battery --- energy storage --- bipolar membrane --- water dissociation --- n/a
Choose an application
Electromembrane processes offer a multitude of applications, allowing for the recovery of water, other products, and energy. This book is a collection of contributions on recent advancements in electromembrane processes attained via experiments and/or models. The first paper is a comprehensive review article on the applications of electrodialysis for wastewater treatment, highlighting current status, technical challenges, and key points for future perspectives. The second paper focuses on ZSM-5 zeolite/PVA mixed matrix CEMs with high monovalent permselectivity for recovering either acid or Li+. The third paper regards direct numerical simulations of electroconvection in an electrodialysis dilute channel with forced flow under potentiodynamic and galvanodynamic regimes. The fourth paper investigates the reasons for the formation and properties of soliton-like charge waves in overlimiting conditions. The fifth paper focuses on the characterization of AEMs functionalized by surface modification via poly(acrylic) acid yielding monovalent permselectivity for reverse electrodialysis. In the sixth paper, CFD simulations of reverse electrodialysis systems are performed. The seventh paper proposes an integrated membrane process, including electrochemical intercalation–deintercalation, for the preparation of Li2CO3 from brine with a high Mg2+/Li+ mass ratio. Finally, the eighth paper is a perspective article devoted to the acid–base flow battery with monopolar and bipolar membranes.
ion-exchange membrane --- electrodialysis --- current-voltage curve --- electroconvection --- potentiodynamic regime --- galvanodynamic regime --- numerical simulation --- ZSM-5 zeolite --- monovalent cation separation --- mixed matrix membrane --- anion exchange membranes --- poly(acrylic) acid modification --- monovalent permselective membranes --- antifouling strategies --- reverse electrodialysis --- electro-membrane process --- electrodialysis reversal --- bipolar membrane electrodialysis --- selectrodialysis --- electrodialysis metathesis --- electrodeionisation --- monovalent selective membranes --- water reuse --- brine valorisation --- mathematical modelling --- using overlimiting current modes --- membrane systems --- cation-exchange membrane --- effect of the breakdown of the space charge --- computational fluid dynamics --- power density --- factorial design --- membrane process --- Li2CO3 --- electrochemical intercalation deintercalation --- high Mg/Li brine --- flow battery --- energy storage --- bipolar membrane --- water dissociation --- n/a
Choose an application
This book focuses on the design of polymeric delivery systems for biomedical and nanomedicine applications as well as on understanding how such biomaterials interact in the physiological environment. The reader will find an encompassing view on the state-of-the-art of polymeric carriers, showing how current research deals with new stimuli-responsive systems for cancer therapies and biomedical challenges, namely overcoming the skin barrier. The published papers cover topics ranging from novel production methods and insights on hybrid polymers to applications as diverse as nanoparticles, hydrogels and microneedles for antifungal skin therapy, peptide and siRNA delivery, enhanced skin absorption of bioactive molecules, and anticancer therapy. The book comprises one review paper and nine research papers.
osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box–Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals --- n/a --- Box-Behnken design
Choose an application
New trends in the cereal industry deal with the persistent need to develop new food goods tailored to consumer requirements and, in the near future, to the scarcity of food resources. Concepts of sustainable food production and food products as health and wellness promoters, the use of organic ingredients such as new ancient cereals to produce redesigned old staple foods, or the use of byproducts in designed food or feed formulations, in accordance with the bioeconomy and sustainability principles, are current topics that act as driving forces for innovation. The structure of cereal-based food products, especially in the case of gluten- or wheat-free foods, has proven to be a determinant for food appeal and strongly impacts consumer acceptance. It is well known that products with the same chemical composition can present very different structures, resulting in differently perceived texture and sensory properties and, therefore, rheology is an important tool for the food cereal industries. These are topics that act as driving forces for innovation and will be discussed in the present Special Issue.
legumes enrichment --- galactosides --- phytate --- protease inhibitors --- phenols --- tomato seed flour --- wheat flour --- dough rheology --- microstructure --- gluten-free bread --- yogurt --- rheology --- gluten-free --- rice bread --- tamarind gum --- factorial design --- optimization --- formula --- processing factor --- ball milling --- hydrocolloids --- starch–flour system --- X-ray diffraction --- pasting profile --- viscoelastic properties --- acorn flour --- gluten-free dough --- fibre-rich ingredient --- underexploited resources --- pasting properties --- microalga Tetraselmis chuii --- texture --- colour --- antioxidants --- phenolics --- dynamic oscillatory shear test --- non-isothermal kinetic modeling --- gluten-free cupcake --- red kidney bean --- gluten-free products --- dynamic oscillatory shear measurements
Choose an application
Electromembrane processes offer a multitude of applications, allowing for the recovery of water, other products, and energy. This book is a collection of contributions on recent advancements in electromembrane processes attained via experiments and/or models. The first paper is a comprehensive review article on the applications of electrodialysis for wastewater treatment, highlighting current status, technical challenges, and key points for future perspectives. The second paper focuses on ZSM-5 zeolite/PVA mixed matrix CEMs with high monovalent permselectivity for recovering either acid or Li+. The third paper regards direct numerical simulations of electroconvection in an electrodialysis dilute channel with forced flow under potentiodynamic and galvanodynamic regimes. The fourth paper investigates the reasons for the formation and properties of soliton-like charge waves in overlimiting conditions. The fifth paper focuses on the characterization of AEMs functionalized by surface modification via poly(acrylic) acid yielding monovalent permselectivity for reverse electrodialysis. In the sixth paper, CFD simulations of reverse electrodialysis systems are performed. The seventh paper proposes an integrated membrane process, including electrochemical intercalation–deintercalation, for the preparation of Li2CO3 from brine with a high Mg2+/Li+ mass ratio. Finally, the eighth paper is a perspective article devoted to the acid–base flow battery with monopolar and bipolar membranes.
Technology: general issues --- ion-exchange membrane --- electrodialysis --- current-voltage curve --- electroconvection --- potentiodynamic regime --- galvanodynamic regime --- numerical simulation --- ZSM-5 zeolite --- monovalent cation separation --- mixed matrix membrane --- anion exchange membranes --- poly(acrylic) acid modification --- monovalent permselective membranes --- antifouling strategies --- reverse electrodialysis --- electro-membrane process --- electrodialysis reversal --- bipolar membrane electrodialysis --- selectrodialysis --- electrodialysis metathesis --- electrodeionisation --- monovalent selective membranes --- water reuse --- brine valorisation --- mathematical modelling --- using overlimiting current modes --- membrane systems --- cation-exchange membrane --- effect of the breakdown of the space charge --- computational fluid dynamics --- power density --- factorial design --- membrane process --- Li2CO3 --- electrochemical intercalation deintercalation --- high Mg/Li brine --- flow battery --- energy storage --- bipolar membrane --- water dissociation --- ion-exchange membrane --- electrodialysis --- current-voltage curve --- electroconvection --- potentiodynamic regime --- galvanodynamic regime --- numerical simulation --- ZSM-5 zeolite --- monovalent cation separation --- mixed matrix membrane --- anion exchange membranes --- poly(acrylic) acid modification --- monovalent permselective membranes --- antifouling strategies --- reverse electrodialysis --- electro-membrane process --- electrodialysis reversal --- bipolar membrane electrodialysis --- selectrodialysis --- electrodialysis metathesis --- electrodeionisation --- monovalent selective membranes --- water reuse --- brine valorisation --- mathematical modelling --- using overlimiting current modes --- membrane systems --- cation-exchange membrane --- effect of the breakdown of the space charge --- computational fluid dynamics --- power density --- factorial design --- membrane process --- Li2CO3 --- electrochemical intercalation deintercalation --- high Mg/Li brine --- flow battery --- energy storage --- bipolar membrane --- water dissociation
Choose an application
This is a book on the practical approaches of reliability to electrotechnical devices and systems. It includes the electromagnetic effect, radiation effect, environmental effect, and the impact of the manufacturing process on electronic materials, devices, and boards.
Technology: general issues --- History of engineering & technology --- 3D-IC (three-dimensional integrated circuit) --- electromagnetic interference --- near field measurement --- SAC305 --- BGA --- low temperature --- fracture failure --- factorial design of experiment --- genetic algorithm optimization --- return loss --- multiple-input multiple-output (MIMO) --- single event effects --- linear energy transfer --- Monte Carlo simulation --- radiation hardness --- pressureless sintered micron silver joints --- deep space environment --- extreme thermal shocks --- reconstruction --- simulation --- elastic mechanical properties --- state of health --- remaining useful life --- electrochemistry based electrical model --- semi-empirical capacity fading model --- useful life distribution --- quality and reliability assurance --- single event effect --- microdosimetry --- lineal energy --- deconvolution --- gamma process --- lifetime --- measurement system analysis --- reliability estimation --- GaN --- operational amplifier --- proton therapy --- prompt gamma imaging --- 3D X-ray --- bias temperature-humidity reliability test --- conductive anodic filament (CAF) --- de-penalization --- finite element analysis --- 3D-IC (three-dimensional integrated circuit) --- electromagnetic interference --- near field measurement --- SAC305 --- BGA --- low temperature --- fracture failure --- factorial design of experiment --- genetic algorithm optimization --- return loss --- multiple-input multiple-output (MIMO) --- single event effects --- linear energy transfer --- Monte Carlo simulation --- radiation hardness --- pressureless sintered micron silver joints --- deep space environment --- extreme thermal shocks --- reconstruction --- simulation --- elastic mechanical properties --- state of health --- remaining useful life --- electrochemistry based electrical model --- semi-empirical capacity fading model --- useful life distribution --- quality and reliability assurance --- single event effect --- microdosimetry --- lineal energy --- deconvolution --- gamma process --- lifetime --- measurement system analysis --- reliability estimation --- GaN --- operational amplifier --- proton therapy --- prompt gamma imaging --- 3D X-ray --- bias temperature-humidity reliability test --- conductive anodic filament (CAF) --- de-penalization --- finite element analysis
Choose an application
This book focuses on the design of polymeric delivery systems for biomedical and nanomedicine applications as well as on understanding how such biomaterials interact in the physiological environment. The reader will find an encompassing view on the state-of-the-art of polymeric carriers, showing how current research deals with new stimuli-responsive systems for cancer therapies and biomedical challenges, namely overcoming the skin barrier. The published papers cover topics ranging from novel production methods and insights on hybrid polymers to applications as diverse as nanoparticles, hydrogels and microneedles for antifungal skin therapy, peptide and siRNA delivery, enhanced skin absorption of bioactive molecules, and anticancer therapy. The book comprises one review paper and nine research papers.
Technology: general issues --- osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box-Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals --- osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box-Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals
Listing 1 - 10 of 22 | << page >> |
Sort by
|