Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2020 (1)

2019 (1)

Listing 1 - 2 of 2
Sort by

Book
Wide Bandgap Semiconductor Based Micro/Nano Devices
Author:
ISBN: 3038978434 3038978426 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.


Book
Optoelectronic Nanodevices
Author:
ISBN: 3039286978 303928696X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

During the last decade, novel graphene related materials (GRMs), perovskites, as well as metal oxides and other metal nanostructures have received the interest of the scientific community. Due to their extraordinary physical, optical, thermal, and electrical properties, which are correlated with their 2D ultrathin atomic layer structure, large interlayer distance, ease of functionalization, and bandgap tunability, these nanomaterials have been applied in the development or the improvement of innovative optoelectronic applications, as well as the expansion of theoretical studies and simulations in the fast-growing fields of energy (photovoltaics, energy storage, fuel cells, hydrogen storage, catalysis, etc.), electronics, photonics, spintronics, and sensing devices. The continuous nanostructure-based applications development has provided the ability to significantly improve existing products and to explore the design of materials and devices with novel functionalities. This book demonstrates some of the most recent trends and advances in the interdisciplinary field of optoelectronics. Most articles focus on light emitting diodes (LEDs) and solar cells (SCs), including organic, inorganic, and hybrid configurations, whereas the rest address photodetectors, transistors, and other well-known dynamic optoelectronic devices. In this context, this exceptional collection of articles is directed at a broad scientific audience of chemists, materials scientists, physicists, and engineers, with the goals of highlighting the potential of innovative optoelectronic applications incorporating nanostructures and inspiring their realization.

Keywords

graphene oxide --- textured silicon solar cells --- n/a --- high-efficiency --- CdTe microdots --- piezo-phototronic effect --- electromagnetically induced transparency effect --- waveguide photons --- light output power --- hole injection --- ternary organic solar cells --- UV LEDs --- cathodoluminescence --- V-pits --- quantum confinement effect --- nano-grating --- metamaterials --- Ga2O3 --- tunneling --- transmittance --- graphene ink --- perovskite solar cells --- counter electrode --- nucleation layer --- Ag film --- AlGaN-based ultraviolet light-emitting diode --- color-conversion efficiency --- PeLEDs --- photoelectric performance --- photocurrent --- charge transfer --- double-layer ITO --- green LED --- liquid crystals --- photovoltaics --- electrowetting --- oxidation --- Fowler–Nordheim --- field emission --- excitation wavelength --- functionalization --- quantum dots --- gold split-ring --- cascade effect --- erbium --- transparent conductive electrode --- compact --- plasmon resonance --- air-processed --- FDTD --- prism-structured sidewall --- sheet resistance --- GaN --- Ti porous film --- stability --- flip-chip mini-LED --- flexible substrate --- actively tunable nanodevices --- green LEDs --- metasurfaces --- antireflective coating (ARC) --- NiCo2S4 nanotubes --- InN/p-GaN heterojunction --- InGaN/GaN superlattice --- OAB --- graded indium composition --- plasmonics --- polymer composites --- photomultiplication --- cold cathode --- solvent --- solar cells --- controllable synthesis --- tunable absorbers --- interface --- graphene --- silicon transistor --- colorimetry --- light extraction --- reduced graphene oxide --- pinhole pattern --- indium nanoparticles (In NPs) --- graphene split-ring --- organic solar cell --- light-emitting diode --- organic --- plasmonic forward scattering --- smooth --- subwavelength metal grating --- perovskite --- photoluminescence --- mid infrared --- polarization analyzer --- transparent electrode --- external quantum efficiency --- LED --- light-emitting diodes --- photodetector --- p-type InGaN --- quantum efficiency --- 2D perovskite --- quantum dot --- orthogonal polarization --- current spreading --- localized surface plasmon --- Schottky barrier --- Fowler-Nordheim

Listing 1 - 2 of 2
Sort by