Listing 1 - 7 of 7 |
Sort by
|
Choose an application
The 2010 Annual British Society for Strain Measurement Conference is the seventh in the series on Advances in Experimental Mechanics, and the fifth time that the papers have been presented as a volume in the Applied Mechanics and Materials series. The 61 papers making up this volume reflect strikingly the diverse nature of experimental mechanics. The fourteen sessions address various disciplines: e.g. aerospace, mechanical and civil engineering and state-of-the-art technologies such as biomechanics, novel sensors, and composite and cellular materials. The papers were contributed by workers in
Choose an application
Mechanical engineering --- Science --- Mechanical engineering. --- Science. --- computation --- experimental mechanics --- dynamics --- fluids engineering --- tribology --- manufacturing engineering --- Natural science --- Science of science --- Sciences --- Engineering, Mechanical --- Engineering --- Machinery --- Steam engineering --- Mechanical Engineering - General --- Natural sciences --- Applied physical engineering --- Engineering sciences. Technology
Choose an application
theoretical and experimental mechanics --- dynamic systems and control --- nonlinear dynamics and chaos --- boundary layer theory --- turbulence and hydrodynamic stability --- Mechanics, Applied --- Mechanics, Analytic --- Mechanics, Analytic. --- Mechanics, Applied. --- Applied mechanics --- Engineering, Mechanical --- Engineering mathematics --- Analytical mechanics --- Kinetics
Choose an application
Materials --- Materials science --- Manufacturing processes --- Deformations (Mechanics) --- Fracture mechanics --- Mechanics, Applied --- Mechanical properties --- Technological innovations --- Failure of solids --- Fracture of materials --- Fracture of solids --- Mechanics, Fracture --- Solids --- Industrial processing --- Manufacture --- Process engineering (Manufactures) --- Processes, Manufacturing --- Processing, Industrial --- Production processes --- Material science --- Engineering --- Engineering materials --- Industrial materials --- Fracture --- Theoretical and Applied Mechanics --- Structural Materials --- Computational Science and Engineering --- Fracture mechanics. --- Mechanics, Applied. --- Technological innovations. --- Mechanical properties. --- Applied mechanics --- Engineering, Mechanical --- Mechanical behavior of materials --- Mechanical properties of materials --- Mechanical behavior --- Engineering mathematics --- Mechanics --- Strength of materials --- Brittleness --- Penetration mechanics --- Structural failures --- Elastic solids --- Rheology --- Strains and stresses --- Industrial arts --- Production engineering --- Machine-tools --- Physical sciences --- Engineering design --- Fatigue --- experimental mechanics --- advanced materials --- materials science --- Materials Science
Choose an application
Digital image correlation (DIC) has become the most popular full field measurement technique in experimental mechanics. It is a versatile and inexpensive measurement method that provides a large amount of experimental data. Because DIC takes advantage of a huge variety of image modalities, the technique allows covering a wide range of space and time scales. Stereo extends the scope of DIC to non-planar cases, which are more representative of industrial use cases. With the development of tomography, digital volume correlation now provides access to volumetric data, enabling the study of the inner behavior of materials and structures.However, the use of DIC data to quantitatively validate models or accurately identify a set of constitutive parameters remains challenging. One of the reasons lies in the compromises between measurement resolution and spatial resolution. Second, the question of the boundary conditions is still open. Another reason is that the measured displacements are not directly comparable with usual simulations. Finally, the use of full field data leads to new computational challenges.
n/a --- image classification --- non-contact video gauge --- X-ray microtomography --- initial condition --- accuracy --- digital image correlation technique --- digital volume correlation --- optical coherence elastography --- automated fiber placement (AFP) --- copper plate --- rupture speed --- layered material --- non-liner dynamic deformation --- composite inspection --- automated systems --- finite element method --- strain measurement --- virtual fields method --- digital volumetric speckle photography --- spatiotemporal evolution --- non-contact measurement --- composite materials --- strain --- interior 3D deformation --- high-speed camera --- gradient correlation functions --- spatial sampling rate --- stress intensity factor --- static analysis --- finite element model updating --- fracture process zone --- elevated temperature --- geosciences --- monitoring --- red sandstone --- structural testing --- cross dichroic prism --- arch structures --- traceable calibration --- stress concentration --- fault geometry --- slip velocity --- uniaxial tensile test --- experimental mechanics --- multi-perspective --- image registration --- super pressure balloon --- stress-strain relationship --- error --- measurement --- earthquake rupture --- acoustic emission technique --- composite structures --- 3D deformation --- traction continuity across interfaces --- DIC --- laser speckles --- image shadowing --- dynamic interfacial rupture --- Digital image correlation (DIC) --- strain gage --- inverse method --- digital image correlation --- characterization of composite materials --- automated composite manufacturing --- woven composite beam --- machine learning --- experimental-numerical method --- 3D digital image correlation --- underwater impulsive loading --- image cross-correlation --- interlaminar tensile strength --- large deformation --- single camera --- image correlation
Choose an application
Corrugated and composite materials can significantly outperform traditional materials. Nowadays, such materials have gained more and more attention and application not only in theoretical, experimental or numerical scientific studies but also in daily industrial problems, which require innovative solutions. The specific geometry of a corrugated layer, or the combination of two or more materials in the structures allows the mechanical properties with specific features favorable for use in a specific engineering problem to be obtained. For example, due to the specific compositions of the corrugated materials, the ratio of the load capacity to the weight of the sections is much higher than that of traditional solid sections. Therefore, such materials should be used when the weight of the structure must be optimized or the structure must have openwork geometry. Among others, the composites can be employed for a variety of purposes, for example, in corrugated boards in the packaging industry; in soft-core sandwich panels, window frames in structural engineering; in wings in commercial, civilian and military aerospace applications; in the vehicle and its equipment devices, including, panels, frames or other interior components; in fans, grating, tanks, ducts and pumps in environmental installations; in electrical engineering in switchgear, motor controls, control system components or circuit breakers; and in many more. This Special Issue “Mechanics of Corrugated and Composite Materials” addresses selected knowledge gaps and aids advance in this area.
corrugated board --- numerical homogenization --- strain energy equivalence --- finite element method --- plate stiffness properties --- shell structures --- transverse shear --- corrugated cardboard --- edge crush test --- orthotropic elasticity --- digital image correlation --- composites --- sandwich panel --- composite structural insulated panel --- magnesium oxide board --- bimodular material --- experimental mechanics --- computational mechanics --- finite element analysis --- perforation --- creasing --- flexural stiffness --- torsional stiffness --- sandwich panels --- local instability --- strain energy --- wrinkling --- orthotropic core --- box strength estimation --- packaging flaps --- crease line shifting --- compressive stiffness --- corrugated box --- compression strength --- pallet --- unit load --- unit load optimization --- composite sandwich structures --- thin-walled structures --- anisotropic material --- corrugated core --- homogenization approach --- first-order shear deformation theory --- FSDT --- FEM simulation --- design process --- aluminium-timber structures --- laminated veneer lumber (LVL) --- toothed plate --- screwed connection --- shear connection --- push-out test --- honeycomb panels --- starch --- impregnation --- climatic conditions --- strength --- stiffness --- energy absorption --- homogenization method --- lattice materials --- periodic cellular materials --- multiscale mechanics --- aluminium powder --- detonation --- explosive --- combustion --- oxidation --- equation of state --- n/a --- localizing gradient damage --- gradient activity function --- tension --- concrete cracking --- impact load --- dynamics --- air operation safety --- flying risk --- risk management --- unmanned aerial vehicles
Choose an application
Corrugated and composite materials can significantly outperform traditional materials. Nowadays, such materials have gained more and more attention and application not only in theoretical, experimental or numerical scientific studies but also in daily industrial problems, which require innovative solutions. The specific geometry of a corrugated layer, or the combination of two or more materials in the structures allows the mechanical properties with specific features favorable for use in a specific engineering problem to be obtained. For example, due to the specific compositions of the corrugated materials, the ratio of the load capacity to the weight of the sections is much higher than that of traditional solid sections. Therefore, such materials should be used when the weight of the structure must be optimized or the structure must have openwork geometry. Among others, the composites can be employed for a variety of purposes, for example, in corrugated boards in the packaging industry; in soft-core sandwich panels, window frames in structural engineering; in wings in commercial, civilian and military aerospace applications; in the vehicle and its equipment devices, including, panels, frames or other interior components; in fans, grating, tanks, ducts and pumps in environmental installations; in electrical engineering in switchgear, motor controls, control system components or circuit breakers; and in many more. This Special Issue “Mechanics of Corrugated and Composite Materials” addresses selected knowledge gaps and aids advance in this area.
Technology: general issues --- History of engineering & technology --- corrugated board --- numerical homogenization --- strain energy equivalence --- finite element method --- plate stiffness properties --- shell structures --- transverse shear --- corrugated cardboard --- edge crush test --- orthotropic elasticity --- digital image correlation --- composites --- sandwich panel --- composite structural insulated panel --- magnesium oxide board --- bimodular material --- experimental mechanics --- computational mechanics --- finite element analysis --- perforation --- creasing --- flexural stiffness --- torsional stiffness --- sandwich panels --- local instability --- strain energy --- wrinkling --- orthotropic core --- box strength estimation --- packaging flaps --- crease line shifting --- compressive stiffness --- corrugated box --- compression strength --- pallet --- unit load --- unit load optimization --- composite sandwich structures --- thin-walled structures --- anisotropic material --- corrugated core --- homogenization approach --- first-order shear deformation theory --- FSDT --- FEM simulation --- design process --- aluminium-timber structures --- laminated veneer lumber (LVL) --- toothed plate --- screwed connection --- shear connection --- push-out test --- honeycomb panels --- starch --- impregnation --- climatic conditions --- strength --- stiffness --- energy absorption --- homogenization method --- lattice materials --- periodic cellular materials --- multiscale mechanics --- aluminium powder --- detonation --- explosive --- combustion --- oxidation --- equation of state --- localizing gradient damage --- gradient activity function --- tension --- concrete cracking --- impact load --- dynamics --- air operation safety --- flying risk --- risk management --- unmanned aerial vehicles
Listing 1 - 7 of 7 |
Sort by
|