Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Molecular Aspects of Plant Salinity Stress and Tolerance
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the advances in plant salinity stress and tolerance, including mechanistic insights revealed using powerful molecular tools and multi-omics and gene functions studied by genetic engineering and advanced biotechnological methods. Additionally, the use of plant growth-promoting rhizobacteria in the improvement of plant salinity tolerance and the underlying mechanisms and progress in breeding for salinity-tolerant rice are comprehensively discussed. Clearly, the published data have contributed to the significant progress in expanding our knowledge in the field of plant salinity stress and the results are valuable in developing salinity-stress-tolerant crops; in benefiting their quality and productivity; and eventually, in supporting the sustainability of the world food supply.

Keywords

Research & information: general --- Biology, life sciences --- watermelon --- salt stress --- RNA-seq --- amino acids --- endocytosis --- Arabidopsis thaliana --- halophyte --- high-affinity potassium transporter (HKT) --- Na+ transporter --- salt tolerance --- Sporobolus virginicus --- aquaporins --- barley --- ion transport --- oocytes --- plasma membrane intrinsic proteins (PIPs) --- GmbZIP15 --- transcription factor --- drought stress --- soybean --- biotechnology breeding --- high-throughput sequencing --- QTLs --- rice --- halophytic wild barley --- salinity --- osmotic stress --- metabolome --- transcriptome --- ionome --- stress adaptation --- Hordeum marinum --- aquaporin --- Zygophyllum xanthoxylum --- plant growth --- abiotic stress --- sensing --- signaling --- transcription factors --- osmoregulation --- antioxidation --- ion homeostasis --- jasmonates --- jasmonate signaling pathway --- crosstalk --- exogenous jasmonate applications --- GWAS --- PGPR --- ACC deaminase --- seed priming --- IAA --- cell wall integrity --- cell wall sensor --- LRXs --- CrRLK1Ls --- Millettia pinnata --- calmodulin-like --- heterologous expression --- halophiles --- plant growth-promoting rhizobacteria (PGPR) --- RNA sequence analysis (RNA-seq) --- quantitative reverse transcriptase PCR (qRT-PCR) --- watermelon --- salt stress --- RNA-seq --- amino acids --- endocytosis --- Arabidopsis thaliana --- halophyte --- high-affinity potassium transporter (HKT) --- Na+ transporter --- salt tolerance --- Sporobolus virginicus --- aquaporins --- barley --- ion transport --- oocytes --- plasma membrane intrinsic proteins (PIPs) --- GmbZIP15 --- transcription factor --- drought stress --- soybean --- biotechnology breeding --- high-throughput sequencing --- QTLs --- rice --- halophytic wild barley --- salinity --- osmotic stress --- metabolome --- transcriptome --- ionome --- stress adaptation --- Hordeum marinum --- aquaporin --- Zygophyllum xanthoxylum --- plant growth --- abiotic stress --- sensing --- signaling --- transcription factors --- osmoregulation --- antioxidation --- ion homeostasis --- jasmonates --- jasmonate signaling pathway --- crosstalk --- exogenous jasmonate applications --- GWAS --- PGPR --- ACC deaminase --- seed priming --- IAA --- cell wall integrity --- cell wall sensor --- LRXs --- CrRLK1Ls --- Millettia pinnata --- calmodulin-like --- heterologous expression --- halophiles --- plant growth-promoting rhizobacteria (PGPR) --- RNA sequence analysis (RNA-seq) --- quantitative reverse transcriptase PCR (qRT-PCR)


Book
Molecular Aspects of Plant Salinity Stress and Tolerance
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the advances in plant salinity stress and tolerance, including mechanistic insights revealed using powerful molecular tools and multi-omics and gene functions studied by genetic engineering and advanced biotechnological methods. Additionally, the use of plant growth-promoting rhizobacteria in the improvement of plant salinity tolerance and the underlying mechanisms and progress in breeding for salinity-tolerant rice are comprehensively discussed. Clearly, the published data have contributed to the significant progress in expanding our knowledge in the field of plant salinity stress and the results are valuable in developing salinity-stress-tolerant crops; in benefiting their quality and productivity; and eventually, in supporting the sustainability of the world food supply.

Listing 1 - 2 of 2
Sort by