Listing 1 - 10 of 32 | << page >> |
Sort by
|
Choose an application
Lasers and Light, Peels and Abrasions is a comprehensive clinical reference on all invasive and non-invasive treatments for aging, diseased, and congenitally deformed skin. Every treatment modality that's used for skin rejuvenation, scars, complications, vascular abnormalities, and ethnic skin type variations, and more, is explained in detail.
Skin --- Chemical peel. --- Chemabrasion --- Chemexfoliation --- Chemical exfoliation --- Chemical peeling --- Exfoliation, Chemical --- Peel, Chemical --- Peeling, Chemical --- Chemosurgery --- Cutaneous diseases --- Dermatoses --- Dermatology --- Diseases.
Choose an application
Chemical peeling is a well known method attempting to restore a more youthful appearance and improving dermatologic defects. Over the last years this technique has been marked by constant innovation. This book is the first atlas on chemical peels, representing the state of the art in this field. It is a fully illustrated text, becoming an ideal reference tool for dermatologists dealing with cosmetology. It is a practical and simple guide: in the first part the peeling techniques are displayed in a step-by-step manner with an exhaustive text supporting the illustrations; in the second part different diseases are discussed in their pathogenesis and treatment options. Each Author then provides his/her personal experience and treatment approach with different peeling techniques in acne, rosacea, melasma, photoaging, postinflammatory hyperpigmentations and dark skin.
Chemical peel --- Skin --- Aging. --- Chemabrasion --- Chemexfoliation --- Chemical exfoliation --- Chemical peeling --- Exfoliation, Chemical --- Peel, Chemical --- Peeling, Chemical --- Chemosurgery --- Dermatology. --- Surgery. --- Nursing. --- Plastic Surgery. --- Clinical nursing --- Nurses and nursing --- Nursing process --- Care of the sick --- Medicine --- Surgery, Primitive --- Diseases --- Plastic surgery. --- Aesthetic surgery --- Cosmetic surgery --- Plastic surgery --- Reconstructive surgery --- Surgery, Aesthetic --- Surgery, Cosmetic --- Surgery, Reconstructive --- Transplantation of organs, tissues, etc. --- Plastic surgeons
Choose an application
This book offers clinical physicians and plastic surgeons a detailed and comprehensive overview of the nonsurgical techniques used for rejuvenation of the lips and eyes. A key aim is to provide practical guidelines for patient selection in order to optimize the choice of treatment in different circumstances. These guidelines will assist in ensuring that the selected rejuvenation technique and the number of applications are appropriate to the specific disorder being treated, thereby maximizing benefits and minimizing side effects. The book explains pretreatment evaluation and describes a wide variety of rejuvenation techniques, including the use of hyaluronic acid fillers, botulinum toxins, skin needling, chemical peels, radiofrequency, ultrasound, and fractional lasers (ablative and nonablative). Contraindications to and complications of the various treatments are clearly identified. A notable feature is the emphasis placed on the role of combined treatments and how they can work in a complementary way to deliver optimal outcomes. The integrated, less invasive approach to periorbital and lip rejuvenation described here by acknowledged experts in the field will enable practitioners to choose with confidence the best aesthetic procedures and innovative tools for their patients.
Medicine. --- Dermatology. --- Ophthalmology. --- Plastic surgery. --- Medicine & Public Health. --- Plastic Surgery. --- Surgery, Plastic. --- Chemical peel. --- Botulinum toxin --- Therapeutic use. --- Chemabrasion --- Chemexfoliation --- Chemical exfoliation --- Chemical peeling --- Exfoliation, Chemical --- Peel, Chemical --- Peeling, Chemical --- Aesthetic surgery --- Cosmetic surgery --- Plastic surgery --- Reconstructive surgery --- Surgery, Aesthetic --- Surgery, Cosmetic --- Surgery, Reconstructive --- Chemosurgery --- Transplantation of organs, tissues, etc. --- Plastic surgeons --- Surgery. --- Medicine --- Eye --- Surgery, Primitive --- Skin --- Diseases
Choose an application
The series “Clinical Approach and Procedures in Cosmetic Dermatology” intends to be a practical guide in Cosmetic Dermatology. Procedures in cosmetic dermatology are very popular and useful in medicine, indicated to complement topical and oral treatments not only for photodamaged skin but also for other dermatosis such as acne, rosacea, scars, etc. Also, full-face treatments using peelings, lasers, fillers and toxins are increasingly being used, successfully substituting or postponing the need for plastic surgeries. Altogether, these techniques not only provide immediate results but also help patients to sustain long-term benefits, both preventing/treating dermatological diseases and maintaining a healthy and youthful skin. Throughout this series, different treatments in Cosmetic Dermatology will be discussed in detail covering the use of many pharmacological groups of cosmeceuticals, the new advances in nutraceuticals and emerging technologies and procedures. This volume discusses in detail the applicability and benefits of chemical peelings. Here are discussed in detail the use of superficial, medium and deep peelings.
Pharmacy. --- Medicine. --- Pharmaceutical technology. --- Dermatology. --- Plastic surgery. --- Medicine & Public Health. --- Plastic Surgery. --- Pharmaceutical Sciences/Technology. --- Surgery. --- Medicine --- Skin --- Pharmaceutical laboratory techniques --- Pharmaceutical laboratory technology --- Technology, Pharmaceutical --- Technology --- Chemistry --- Drugs --- Materia medica --- Pharmacology --- Surgery, Primitive --- Diseases --- Chemical peel. --- Chemabrasion --- Chemexfoliation --- Chemical exfoliation --- Chemical peeling --- Exfoliation, Chemical --- Peel, Chemical --- Peeling, Chemical --- Chemosurgery
Choose an application
Aluminum alloys --- -Chemical peel --- -Corrosion and anti-corrosives --- -Anti-corrosive paint --- Atmospheric corrosion --- Metal corrosion --- Metals --- Rust --- Rustless coatings --- Chemical inhibitors --- Chemistry, Technical --- Fouling --- Materials --- Weathering --- Paint --- Protective coatings --- Waterproofing --- Chemabrasion --- Chemexfoliation --- Chemical exfoliation --- Chemical peeling --- Exfoliation, Chemical --- Peel, Chemical --- Peeling, Chemical --- Chemosurgery --- Light metal alloys --- Corrosion --- -Testing --- -Congresses --- Congresses --- Testing --- Deterioration --- Surfaces --- Chemical peel --- Corrosion and anti-corrosives --- Anti-corrosive paint --- Corrosion&delete& --- Testing&delete& --- Congresses.
Choose an application
Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
History of engineering & technology --- α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film-substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir-Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system --- α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film-substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir-Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system
Choose an application
Graphene is a two-dimensional, one-atom-thick material made entirely of carbon atoms, arranged in a honeycomb lattice. Because of its distinctive mechanical (e.g., high strength and flexibility) and electronic (great electrical and thermal conductivities) properties, graphene is an ideal candidate in myriad applications. Thus, it has just begun to be engineered in electronics, photonics, biomedicine, and polymer-based composites, to name a few. The broad family of graphene nanomaterials (including graphene nanoplatelets, graphene oxide, graphene quantum dots, and many more) go beyond and aim higher than mere single-layer (‘pristine’) graphene, and thus, their potential has sparked the current Special Issue. In it, 18 contributions (comprising 14 research articles and 4 reviews) have portrayed probably the most interesting lines as regards future and tangible uses of graphene derivatives. Ultimately, understanding the properties of the graphene family of nanomaterials is crucial for developing advanced applications to solve important challenges in critical areas such as energy and health.
Research & information: general --- Earth sciences, geography, environment, planning --- graphene oxide --- electrochemical synthesis --- oxidation level --- exfoliation degree --- morphology --- interlayer spacing --- surface defects --- electrical resistance --- graphene --- mass production --- shear exfoliation --- physical exfoliation --- superlattice --- 2d materials --- electrocatalytic --- modified graphene nanoplates --- graphene additives --- antifriction --- engine lubricant oil additives --- antiwear --- carbon nanofibers --- reduced graphene oxide nanofibers --- hydrothermal reduction --- capacitance --- amine --- cryogel --- CO2 capture --- sol-gel --- silico-phosphate composite films --- optical limiting functionality --- ultrashort laser pulses --- carbon nanotubes --- hot-filament CVD --- field electron emission --- laser machining --- nanotechnology --- graphene-derived materials --- mud cake --- rheology --- effect of nanocomposites --- fluid loss --- water-based drilling fluids --- cement composite --- characterization --- rheological --- application --- energy harvesting --- α-lipoic acid --- UV-VIS spectroscopy --- SERS spectroscopy --- thermal properties --- electrical properties --- strain sensing --- joule heating --- reduced graphene oxide --- tissue regeneration --- 2D-scaffolds --- hydrogels --- fibers --- stem cell differentiation --- cadmium sulphide --- PVK --- hybrid light-emitting device --- electroluminescence --- nanocrystals --- graphite --- few-layer graphene --- Raman --- TEM --- UV-vis --- Lorentzian fitting --- nanocellulose --- conductive inks --- liquid-phase processing --- film fabrication --- sustainability --- metal-free electrodes --- graphyne-like materials --- synthesis and doping --- electronic and magnetic properties --- electronic transport --- photodetectors --- reduce graphene oxide --- dyes --- heavy metals --- pollutant removal --- graphene oxide --- electrochemical synthesis --- oxidation level --- exfoliation degree --- morphology --- interlayer spacing --- surface defects --- electrical resistance --- graphene --- mass production --- shear exfoliation --- physical exfoliation --- superlattice --- 2d materials --- electrocatalytic --- modified graphene nanoplates --- graphene additives --- antifriction --- engine lubricant oil additives --- antiwear --- carbon nanofibers --- reduced graphene oxide nanofibers --- hydrothermal reduction --- capacitance --- amine --- cryogel --- CO2 capture --- sol-gel --- silico-phosphate composite films --- optical limiting functionality --- ultrashort laser pulses --- carbon nanotubes --- hot-filament CVD --- field electron emission --- laser machining --- nanotechnology --- graphene-derived materials --- mud cake --- rheology --- effect of nanocomposites --- fluid loss --- water-based drilling fluids --- cement composite --- characterization --- rheological --- application --- energy harvesting --- α-lipoic acid --- UV-VIS spectroscopy --- SERS spectroscopy --- thermal properties --- electrical properties --- strain sensing --- joule heating --- reduced graphene oxide --- tissue regeneration --- 2D-scaffolds --- hydrogels --- fibers --- stem cell differentiation --- cadmium sulphide --- PVK --- hybrid light-emitting device --- electroluminescence --- nanocrystals --- graphite --- few-layer graphene --- Raman --- TEM --- UV-vis --- Lorentzian fitting --- nanocellulose --- conductive inks --- liquid-phase processing --- film fabrication --- sustainability --- metal-free electrodes --- graphyne-like materials --- synthesis and doping --- electronic and magnetic properties --- electronic transport --- photodetectors --- reduce graphene oxide --- dyes --- heavy metals --- pollutant removal
Choose an application
Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
History of engineering & technology --- α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film–substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir–Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system --- n/a --- film-substrate interaction --- Langmuir-Blodgett technique
Choose an application
Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film–substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir–Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system --- n/a --- film-substrate interaction --- Langmuir-Blodgett technique
Choose an application
Graphene is a two-dimensional, one-atom-thick material made entirely of carbon atoms, arranged in a honeycomb lattice. Because of its distinctive mechanical (e.g., high strength and flexibility) and electronic (great electrical and thermal conductivities) properties, graphene is an ideal candidate in myriad applications. Thus, it has just begun to be engineered in electronics, photonics, biomedicine, and polymer-based composites, to name a few. The broad family of graphene nanomaterials (including graphene nanoplatelets, graphene oxide, graphene quantum dots, and many more) go beyond and aim higher than mere single-layer (‘pristine’) graphene, and thus, their potential has sparked the current Special Issue. In it, 18 contributions (comprising 14 research articles and 4 reviews) have portrayed probably the most interesting lines as regards future and tangible uses of graphene derivatives. Ultimately, understanding the properties of the graphene family of nanomaterials is crucial for developing advanced applications to solve important challenges in critical areas such as energy and health.
Research & information: general --- Earth sciences, geography, environment, planning --- graphene oxide --- electrochemical synthesis --- oxidation level --- exfoliation degree --- morphology --- interlayer spacing --- surface defects --- electrical resistance --- graphene --- mass production --- shear exfoliation --- physical exfoliation --- superlattice --- 2d materials --- electrocatalytic --- modified graphene nanoplates --- graphene additives --- antifriction --- engine lubricant oil additives --- antiwear --- carbon nanofibers --- reduced graphene oxide nanofibers --- hydrothermal reduction --- capacitance --- amine --- cryogel --- CO2 capture --- sol-gel --- silico-phosphate composite films --- optical limiting functionality --- ultrashort laser pulses --- carbon nanotubes --- hot-filament CVD --- field electron emission --- laser machining --- nanotechnology --- graphene-derived materials --- mud cake --- rheology --- effect of nanocomposites --- fluid loss --- water-based drilling fluids --- cement composite --- characterization --- rheological --- application --- energy harvesting --- α-lipoic acid --- UV-VIS spectroscopy --- SERS spectroscopy --- thermal properties --- electrical properties --- strain sensing --- joule heating --- reduced graphene oxide --- tissue regeneration --- 2D-scaffolds --- hydrogels --- fibers --- stem cell differentiation --- cadmium sulphide --- PVK --- hybrid light-emitting device --- electroluminescence --- nanocrystals --- graphite --- few-layer graphene --- Raman --- TEM --- UV-vis --- Lorentzian fitting --- nanocellulose --- conductive inks --- liquid-phase processing --- film fabrication --- sustainability --- metal-free electrodes --- graphyne-like materials --- synthesis and doping --- electronic and magnetic properties --- electronic transport --- photodetectors --- reduce graphene oxide --- dyes --- heavy metals --- pollutant removal --- n/a
Listing 1 - 10 of 32 | << page >> |
Sort by
|