Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULB (5)

ULiège (5)

VIVES (5)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2021 (6)

2020 (1)

2019 (3)

2017 (3)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Metabotropic Glutamate Receptors and Neurological/Psychiatric Disorders
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
The Role of Mitochondria, Oxidative Stress and Altered Calcium Homeostasis in Amyotrophic Lateral Sclerosis: From Current Developments in the Laboratory to Clinical Treatments
Author:
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, devastating and fatal disease characterized by selective loss of upper and lower motor neurons of the cerebral cortex, brainstem, spinal cord and muscle atrophy. In spite of many years of research, the pathogenesis of ALS is still not well understood. ALS is a multifaceted genetic disease, in which genetic susceptibility to motor neuron death interacts with environmental factors and there is still no cure for this deleterious disease. At present, there is only one FDA approved drug, Riluzole which according to past studies only modestly slows the progression of the disease, and improves survival by up to three months. The suffering of the ALS patients, and their families is enormous and the economic burden is colossal. There is therefore a pressing need for new therapies. Different molecular pathways and pathological mechanisms have been implicated in ALS. According to past studies, altered calcium homeostasis, abnormal mitochondrial function, protein misfolding, axonal transport defects, excessive production of extracellular superoxide radicals, glutamate-mediated excitotoxicity, inflammatory events, and activation of oxidative stress pathways within the mitochondria and endoplasmic reticulum can act as major contributor that eventually leads to loss of connection between muscle and nerve ultimately resulting to ALS. However, the detailed molecular and cellular pathophysiological mechanisms and origin and temporal progression of the disease still remained elusive. Ongoing research and future advances will likely advance our improve understanding about various involved pathological mechanism ultimately leading to discoveries of new therapeutic cures. Importantly, clinical biomarkers of disease onset and progression are thus also urgently needed to support the development of the new therapeutic agents and novel preventive and curative strategies. Effective translation from pre-clinical to clinical studies will further require extensive knowledge regarding drug activity, bioavailability and efficacy in both the pre-clinical and clinical setting, and proof of biological activity in the target tissue. During the last decades, the development of new therapeutic molecules, advance neuroimaging tools, patient derived induced stem cells and new precision medicine approaches to study ALS has significantly improved our understanding of disease. In particular, new genetic tools, neuroimaging methods, cellular probes, biomarker study and molecular techniques that achieve high spatiotemporal resolution have revealed new details about the disease onset and its progression. In our effort to provide the interested reader, clinician and researchers a comprehensive summaries and new findings in this field of ALS research, hereby we have created this electronic book which comprises of twenty seven chapters having various reviews, perspective and original research articles. All these chapters and articles in this book not only summarize the cutting-edge techniques, approaches, cell and animal models to study ALS but also provide unprecedented coverage of the current developments and new hypothesis emerging in ALS research. Some examples are novel genetic and cell culture based models, mitochondria-mediated therapy, oxidative stress and ROS mechanism, development of stem cells and mechanism-based therapies as well as novel biomarkers for designing and testing effective therapeutic strategies that can benefit ALS patients who are at the earlier stages in the disease. I am extremely grateful to all the contributors to this book and want to thank them for their phenomenal efforts. Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, devastating and fatal disease characterized by selective loss of upper and lower motor neurons of the cerebral cortex, brainstem, spinal cord and muscle atrophy. In spite of many years of research, the pathogenesis of ALS is still not well understood. ALS is a multifaceted genetic disease, in which genetic susceptibility to motor neuron death interacts with environmental factors and there is still no cure for this deleterious disease. At present, there is only one FDA approved drug, Riluzole which according to past studies only modestly slows the progression of the disease, and improves survival by up to three months. The suffering of the ALS patients, and their families is enormous and the economic burden is colossal. There is therefore a pressing need for new therapies. Different molecular pathways and pathological mechanisms have been implicated in ALS. According to past studies, altered calcium homeostasis, abnormal mitochondrial function, protein misfolding, axonal transport defects, excessive production of extracellular superoxide radicals, glutamate-mediated excitotoxicity, inflammatory events, and activation of oxidative stress pathways within the mitochondria and endoplasmic reticulum can act as major contributor that eventually leads to loss of connection between muscle and nerve ultimately resulting to ALS. However, the detailed molecular and cellular pathophysiological mechanisms and origin and temporal progression of the disease still remained elusive. Ongoing research and future advances will likely advance our improve understanding about various involved pathological mechanism ultimately leading to discoveries of new therapeutic cures. Importantly, clinical biomarkers of disease onset and progression are thus also urgently needed to support the development of the new therapeutic agents and novel preventive and curative strategies. Effective translation from pre-clinical to clinical studies will further require extensive knowledge regarding drug activity, bioavailability and efficacy in both the pre-clinical and clinical setting, and proof of biological activity in the target tissue. During the last decades, the development of new therapeutic molecules, advance neuroimaging tools, patient derived induced stem cells and new precision medicine approaches to study ALS has significantly improved our understanding of disease. In particular, new genetic tools, neuroimaging methods, cellular probes, biomarker study and molecular techniques that achieve high spatiotemporal resolution have revealed new details about the disease onset and its progression. In our effort to provide the interested reader, clinician and researchers a comprehensive summaries and new findings in this field of ALS research, hereby we have created this electronic book which comprises of twenty seven chapters having various reviews, perspective and original research articles. All these chapters and articles in this book not only summarize the cutting-edge techniques, approaches, cell and animal models to study ALS but also provide unprecedented coverage of the current developments and new hypothesis emerging in ALS research. Some examples are novel genetic and cell culture based models, mitochondria-mediated therapy, oxidative stress and ROS mechanism, development of stem cells and mechanism-based therapies as well as novel biomarkers for designing and testing effective therapeutic strategies that can benefit ALS patients who are at the earlier stages in the disease. I am extremely grateful to all the contributors to this book and want to thank them for their phenomenal efforts.


Book
Metabotropic Glutamate Receptors and Neurological/Psychiatric Disorders
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
The Role of Mitochondria, Oxidative Stress and Altered Calcium Homeostasis in Amyotrophic Lateral Sclerosis: From Current Developments in the Laboratory to Clinical Treatments
Author:
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, devastating and fatal disease characterized by selective loss of upper and lower motor neurons of the cerebral cortex, brainstem, spinal cord and muscle atrophy. In spite of many years of research, the pathogenesis of ALS is still not well understood. ALS is a multifaceted genetic disease, in which genetic susceptibility to motor neuron death interacts with environmental factors and there is still no cure for this deleterious disease. At present, there is only one FDA approved drug, Riluzole which according to past studies only modestly slows the progression of the disease, and improves survival by up to three months. The suffering of the ALS patients, and their families is enormous and the economic burden is colossal. There is therefore a pressing need for new therapies. Different molecular pathways and pathological mechanisms have been implicated in ALS. According to past studies, altered calcium homeostasis, abnormal mitochondrial function, protein misfolding, axonal transport defects, excessive production of extracellular superoxide radicals, glutamate-mediated excitotoxicity, inflammatory events, and activation of oxidative stress pathways within the mitochondria and endoplasmic reticulum can act as major contributor that eventually leads to loss of connection between muscle and nerve ultimately resulting to ALS. However, the detailed molecular and cellular pathophysiological mechanisms and origin and temporal progression of the disease still remained elusive. Ongoing research and future advances will likely advance our improve understanding about various involved pathological mechanism ultimately leading to discoveries of new therapeutic cures. Importantly, clinical biomarkers of disease onset and progression are thus also urgently needed to support the development of the new therapeutic agents and novel preventive and curative strategies. Effective translation from pre-clinical to clinical studies will further require extensive knowledge regarding drug activity, bioavailability and efficacy in both the pre-clinical and clinical setting, and proof of biological activity in the target tissue. During the last decades, the development of new therapeutic molecules, advance neuroimaging tools, patient derived induced stem cells and new precision medicine approaches to study ALS has significantly improved our understanding of disease. In particular, new genetic tools, neuroimaging methods, cellular probes, biomarker study and molecular techniques that achieve high spatiotemporal resolution have revealed new details about the disease onset and its progression. In our effort to provide the interested reader, clinician and researchers a comprehensive summaries and new findings in this field of ALS research, hereby we have created this electronic book which comprises of twenty seven chapters having various reviews, perspective and original research articles. All these chapters and articles in this book not only summarize the cutting-edge techniques, approaches, cell and animal models to study ALS but also provide unprecedented coverage of the current developments and new hypothesis emerging in ALS research. Some examples are novel genetic and cell culture based models, mitochondria-mediated therapy, oxidative stress and ROS mechanism, development of stem cells and mechanism-based therapies as well as novel biomarkers for designing and testing effective therapeutic strategies that can benefit ALS patients who are at the earlier stages in the disease. I am extremely grateful to all the contributors to this book and want to thank them for their phenomenal efforts. Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, devastating and fatal disease characterized by selective loss of upper and lower motor neurons of the cerebral cortex, brainstem, spinal cord and muscle atrophy. In spite of many years of research, the pathogenesis of ALS is still not well understood. ALS is a multifaceted genetic disease, in which genetic susceptibility to motor neuron death interacts with environmental factors and there is still no cure for this deleterious disease. At present, there is only one FDA approved drug, Riluzole which according to past studies only modestly slows the progression of the disease, and improves survival by up to three months. The suffering of the ALS patients, and their families is enormous and the economic burden is colossal. There is therefore a pressing need for new therapies. Different molecular pathways and pathological mechanisms have been implicated in ALS. According to past studies, altered calcium homeostasis, abnormal mitochondrial function, protein misfolding, axonal transport defects, excessive production of extracellular superoxide radicals, glutamate-mediated excitotoxicity, inflammatory events, and activation of oxidative stress pathways within the mitochondria and endoplasmic reticulum can act as major contributor that eventually leads to loss of connection between muscle and nerve ultimately resulting to ALS. However, the detailed molecular and cellular pathophysiological mechanisms and origin and temporal progression of the disease still remained elusive. Ongoing research and future advances will likely advance our improve understanding about various involved pathological mechanism ultimately leading to discoveries of new therapeutic cures. Importantly, clinical biomarkers of disease onset and progression are thus also urgently needed to support the development of the new therapeutic agents and novel preventive and curative strategies. Effective translation from pre-clinical to clinical studies will further require extensive knowledge regarding drug activity, bioavailability and efficacy in both the pre-clinical and clinical setting, and proof of biological activity in the target tissue. During the last decades, the development of new therapeutic molecules, advance neuroimaging tools, patient derived induced stem cells and new precision medicine approaches to study ALS has significantly improved our understanding of disease. In particular, new genetic tools, neuroimaging methods, cellular probes, biomarker study and molecular techniques that achieve high spatiotemporal resolution have revealed new details about the disease onset and its progression. In our effort to provide the interested reader, clinician and researchers a comprehensive summaries and new findings in this field of ALS research, hereby we have created this electronic book which comprises of twenty seven chapters having various reviews, perspective and original research articles. All these chapters and articles in this book not only summarize the cutting-edge techniques, approaches, cell and animal models to study ALS but also provide unprecedented coverage of the current developments and new hypothesis emerging in ALS research. Some examples are novel genetic and cell culture based models, mitochondria-mediated therapy, oxidative stress and ROS mechanism, development of stem cells and mechanism-based therapies as well as novel biomarkers for designing and testing effective therapeutic strategies that can benefit ALS patients who are at the earlier stages in the disease. I am extremely grateful to all the contributors to this book and want to thank them for their phenomenal efforts.


Book
Metabotropic Glutamate Receptors and Neurological/Psychiatric Disorders
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
The Role of Mitochondria, Oxidative Stress and Altered Calcium Homeostasis in Amyotrophic Lateral Sclerosis: From Current Developments in the Laboratory to Clinical Treatments
Author:
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, devastating and fatal disease characterized by selective loss of upper and lower motor neurons of the cerebral cortex, brainstem, spinal cord and muscle atrophy. In spite of many years of research, the pathogenesis of ALS is still not well understood. ALS is a multifaceted genetic disease, in which genetic susceptibility to motor neuron death interacts with environmental factors and there is still no cure for this deleterious disease. At present, there is only one FDA approved drug, Riluzole which according to past studies only modestly slows the progression of the disease, and improves survival by up to three months. The suffering of the ALS patients, and their families is enormous and the economic burden is colossal. There is therefore a pressing need for new therapies. Different molecular pathways and pathological mechanisms have been implicated in ALS. According to past studies, altered calcium homeostasis, abnormal mitochondrial function, protein misfolding, axonal transport defects, excessive production of extracellular superoxide radicals, glutamate-mediated excitotoxicity, inflammatory events, and activation of oxidative stress pathways within the mitochondria and endoplasmic reticulum can act as major contributor that eventually leads to loss of connection between muscle and nerve ultimately resulting to ALS. However, the detailed molecular and cellular pathophysiological mechanisms and origin and temporal progression of the disease still remained elusive. Ongoing research and future advances will likely advance our improve understanding about various involved pathological mechanism ultimately leading to discoveries of new therapeutic cures. Importantly, clinical biomarkers of disease onset and progression are thus also urgently needed to support the development of the new therapeutic agents and novel preventive and curative strategies. Effective translation from pre-clinical to clinical studies will further require extensive knowledge regarding drug activity, bioavailability and efficacy in both the pre-clinical and clinical setting, and proof of biological activity in the target tissue. During the last decades, the development of new therapeutic molecules, advance neuroimaging tools, patient derived induced stem cells and new precision medicine approaches to study ALS has significantly improved our understanding of disease. In particular, new genetic tools, neuroimaging methods, cellular probes, biomarker study and molecular techniques that achieve high spatiotemporal resolution have revealed new details about the disease onset and its progression. In our effort to provide the interested reader, clinician and researchers a comprehensive summaries and new findings in this field of ALS research, hereby we have created this electronic book which comprises of twenty seven chapters having various reviews, perspective and original research articles. All these chapters and articles in this book not only summarize the cutting-edge techniques, approaches, cell and animal models to study ALS but also provide unprecedented coverage of the current developments and new hypothesis emerging in ALS research. Some examples are novel genetic and cell culture based models, mitochondria-mediated therapy, oxidative stress and ROS mechanism, development of stem cells and mechanism-based therapies as well as novel biomarkers for designing and testing effective therapeutic strategies that can benefit ALS patients who are at the earlier stages in the disease. I am extremely grateful to all the contributors to this book and want to thank them for their phenomenal efforts. Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, devastating and fatal disease characterized by selective loss of upper and lower motor neurons of the cerebral cortex, brainstem, spinal cord and muscle atrophy. In spite of many years of research, the pathogenesis of ALS is still not well understood. ALS is a multifaceted genetic disease, in which genetic susceptibility to motor neuron death interacts with environmental factors and there is still no cure for this deleterious disease. At present, there is only one FDA approved drug, Riluzole which according to past studies only modestly slows the progression of the disease, and improves survival by up to three months. The suffering of the ALS patients, and their families is enormous and the economic burden is colossal. There is therefore a pressing need for new therapies. Different molecular pathways and pathological mechanisms have been implicated in ALS. According to past studies, altered calcium homeostasis, abnormal mitochondrial function, protein misfolding, axonal transport defects, excessive production of extracellular superoxide radicals, glutamate-mediated excitotoxicity, inflammatory events, and activation of oxidative stress pathways within the mitochondria and endoplasmic reticulum can act as major contributor that eventually leads to loss of connection between muscle and nerve ultimately resulting to ALS. However, the detailed molecular and cellular pathophysiological mechanisms and origin and temporal progression of the disease still remained elusive. Ongoing research and future advances will likely advance our improve understanding about various involved pathological mechanism ultimately leading to discoveries of new therapeutic cures. Importantly, clinical biomarkers of disease onset and progression are thus also urgently needed to support the development of the new therapeutic agents and novel preventive and curative strategies. Effective translation from pre-clinical to clinical studies will further require extensive knowledge regarding drug activity, bioavailability and efficacy in both the pre-clinical and clinical setting, and proof of biological activity in the target tissue. During the last decades, the development of new therapeutic molecules, advance neuroimaging tools, patient derived induced stem cells and new precision medicine approaches to study ALS has significantly improved our understanding of disease. In particular, new genetic tools, neuroimaging methods, cellular probes, biomarker study and molecular techniques that achieve high spatiotemporal resolution have revealed new details about the disease onset and its progression. In our effort to provide the interested reader, clinician and researchers a comprehensive summaries and new findings in this field of ALS research, hereby we have created this electronic book which comprises of twenty seven chapters having various reviews, perspective and original research articles. All these chapters and articles in this book not only summarize the cutting-edge techniques, approaches, cell and animal models to study ALS but also provide unprecedented coverage of the current developments and new hypothesis emerging in ALS research. Some examples are novel genetic and cell culture based models, mitochondria-mediated therapy, oxidative stress and ROS mechanism, development of stem cells and mechanism-based therapies as well as novel biomarkers for designing and testing effective therapeutic strategies that can benefit ALS patients who are at the earlier stages in the disease. I am extremely grateful to all the contributors to this book and want to thank them for their phenomenal efforts.


Book
Metabolomics in Neurodegenerative Disease
Author:
ISBN: 3039280414 3039280406 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The range of human neurodegenerative diseases continues to pose significant unmet medical needs for societies around the world. The progressive and terminal nature of these conditions places a considerable personal burden on the individual affected but also on public health systems and health services. Tens of millions of people are indiscriminately affected by various dementias, which are rising at an alarming rate. There are no cures for many conditions, and it is clear that treatments applied as early as possible could greatly improve outcomes for patients. Therefore, new disease classification and diagnostic tools should be a key priority. Metabolomics represents a relatively new field of analytical science, which can be extremely useful in the early diagnosis of disease. The relatively unique feature of metabolites is that they sit at the intersection between the genetic background of an organism and its environment. Because many neurodegenerative diseases are not genetically inherited (instead having a range of known genetic risk factors and also a large number of unknown environmental triggers) the field of metabolomics offers great promise for the discovery of new, biologically, and clinically relevant biomarkers for neurodegenerative disorders. It is already bringing forward new knowledge in terms of the mechanisms of neurodegenerative disease.


Book
Neuroprotection: Rescue from Neuronal Death in the Brain
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dear Colleagues, The brain is vulnerable to injury. Following injury in the brain, apoptosis or necrosis may occur easily, leading to various functional disabilities. Neuronal death is associated with a number of neurological disorders including hypoxic ischemia, epileptic seizures, and neurodegenerative diseases. The brain subjected to injury is regarded to be responsible for the alterations in neurotransmission processes, resulting in functional changes. Oxidative stress produced by reactive oxygen species has been shown to be related to the death of neurons in traumatic injury, stroke, and neurodegenerative diseases. Therefore, scavenging or decreasing free radicals may be crucial for preventing neural tissues from harmful adversities in the brain. Neurotrophic factors, bioactive compounds, dietary nutrients, or cell engineering may ameliorate the pathological processes related to neuronal death or neurodegeneration and appear beneficial for improving neuroprotection. As a result of neuronal death or neuroprotection, the brain undergoes activity-dependent long-lasting changes in synaptic transmission, which is also known as functional plasticity. Neuroprotection implying the rescue from neuronal death is now becoming one of global health concerns. This Special Issue attempts to explore the recent advances in neuroprotection related to the brain. This Special Issue welcomes original research or review papers demonstrating the mechanisms of neuroprotection against brain injury using in vivo or in vitro models of animals as well as in clinical settings. The issues in a paper should be supported by sufficient data or evidence. Prof. Bae Hwan Lee Guest Editor

Keywords

Research & information: general --- global cerebral ischemia --- amiloride --- sodium–hydrogen exchanger-1 --- zinc --- neuronal death --- neuroprotection --- neurodegenerative disorder --- choline acetyltransferase (ChAT) --- trimethyltin (TMT) --- bean phosphatidylserine (Bean-PS) --- brain-derived neurotrophic factor --- moderate hypoxia --- physical exercise --- psychomotor function --- reaction time --- cortisol --- catecholamines --- nitrite --- endotheline-1 --- lactate --- pyridoxine deficiency --- ischemia --- gerbil --- homocysteine --- cell death --- glia --- neurogenesis --- N-acetyl-l-cysteine --- transient receptor potential melastatin 2 --- neurodegeneration --- Alzheimer’s disease --- metabolic disease --- adiponectin --- insulin --- antioxidants --- stroke --- preventive gene therapy --- adenoviral vector --- VEGF --- GDNF --- NCAM --- human umbilical cord blood mononuclear cells --- antioxidant --- brain --- neurodegenerative disease --- oxidative stress --- PGC-1α --- vascular endothelial growth factor --- vascular endothelial growth factor receptor 2 --- PI3K/AKT --- MEK/ERK --- status epilepticus --- hippocampus --- middle cerebral artery occlusion --- reperfusion injury --- lipid emulsion --- excitotoxicity --- apoptosis --- GPR4 receptor --- MPP+ --- Parkinson’s disease --- CRISPR/cas9 --- ischemic stroke --- blood brain barrier --- nanoparticle-based drug delivery --- brain targeting --- BDNF --- miRNAs --- synaptic plasticity --- depression --- glioblastoma --- astrocytes --- astrocytic networks --- connexin 43 --- calcium activity --- neural injury --- nimodipine --- subarachnoid haemorrhage --- acid-sensing ion channels --- oxygen-glucose deprivation --- liver growth factor --- inflammation --- microglia --- Tg2576 transgenic mice --- amyloid-beta --- oculomotor system --- trophic factors --- motoneurons --- axotomy --- amyotrophic lateral sclerosis --- electroneutral transport --- cation-chloride cotransporters --- KCCs --- NKCCs --- WNK-SPAK/OSR1 --- ascorbic acid --- aging --- organotypic hippocampal slice culture --- n/a --- sodium-hydrogen exchanger-1 --- Alzheimer's disease --- Parkinson's disease


Book
Understanding Neuromuscular Health and Disease: Advances in Genetics, Omics, and Molecular Function
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This compilation focuses on recent advances in the molecular and cellular understandingof neuromuscular biology, and the treatment of neuromuscular disease.These advances are at the forefront of modern molecular methodologies, oftenintegrating across wet-lab cell and tissue models, dry-lab computational approaches,and clinical studies. The continuing development and application ofmultiomics methods offer particular challenges and opportunities in the field,not least in the potential for personalized medicine.

Keywords

Research & information: general --- LMNA --- Emery–Dreifuss muscular dystrophy --- Omics --- ALS --- MND --- ALS variants --- genotype–phenotype --- ALS genes --- FSHD --- DUX4 --- transcription --- muscle --- regulation --- spinal muscular atrophy --- adult patients --- disease heterogeneity --- Nusinersen --- disease modifiers --- functional outcomes --- biomarkers --- epigenetic changes --- -omics approaches --- oxidative stress --- mitochondria dysfunction --- axonal transport --- autophagy --- endocytosis --- secretion --- excitotoxicity --- RNA metabolism --- Duchenne muscular dystrophy (DMD) --- exon-skipping therapies --- next-generation sequencing (NGS) --- Sanger sequencing --- multiplex ligation probe amplification (MLPA) --- multiplex polymerase chain reaction (PCR) --- comparative genomic hybridization array (CGH) --- viltolarsen --- eteplirsen --- golodirsen --- rheumatoid arthritis --- SNP --- DMARD --- methotrexate --- pharmacogenomics --- Duchenne muscular dystrophy --- pharmacodynamic biomarkers --- prednisone --- deflazacort --- glucocorticoids --- corticosteroids --- safety --- neuromuscular diseases --- translational research --- disease models --- precision medicine --- miRNA --- proteomics --- calprotectin --- dystrophy --- Becker muscular dystrophy --- dystrophinopathy --- genotype-phenotype correlations --- Canadian Neuromuscular Disease Registry --- reading frame rule --- dystrophin --- multiple logistic regression analysis --- exon skipping therapy --- Amyotrophic Lateral Sclerosis --- machine learning --- genome-wide association studies --- GWAS --- genomics --- ALS pathology --- gene prioritization --- AAV --- genetic neuromuscular disorders --- gene therapy --- clinical trials --- toxicity --- SMA --- DMD --- XLMTM --- facioscapulohumeral dystrophy --- TALEN --- CRISPR-Cas9 --- gene editing --- polyadenylation --- D4Z4 --- duchenne muscular dystrophy (DMD) --- becker muscular dystrophy (BMD) --- exon skipping --- skip-equivalent deletions --- n/a --- Emery-Dreifuss muscular dystrophy --- genotype-phenotype


Book
Neuroprotection: Rescue from Neuronal Death in the Brain
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dear Colleagues, The brain is vulnerable to injury. Following injury in the brain, apoptosis or necrosis may occur easily, leading to various functional disabilities. Neuronal death is associated with a number of neurological disorders including hypoxic ischemia, epileptic seizures, and neurodegenerative diseases. The brain subjected to injury is regarded to be responsible for the alterations in neurotransmission processes, resulting in functional changes. Oxidative stress produced by reactive oxygen species has been shown to be related to the death of neurons in traumatic injury, stroke, and neurodegenerative diseases. Therefore, scavenging or decreasing free radicals may be crucial for preventing neural tissues from harmful adversities in the brain. Neurotrophic factors, bioactive compounds, dietary nutrients, or cell engineering may ameliorate the pathological processes related to neuronal death or neurodegeneration and appear beneficial for improving neuroprotection. As a result of neuronal death or neuroprotection, the brain undergoes activity-dependent long-lasting changes in synaptic transmission, which is also known as functional plasticity. Neuroprotection implying the rescue from neuronal death is now becoming one of global health concerns. This Special Issue attempts to explore the recent advances in neuroprotection related to the brain. This Special Issue welcomes original research or review papers demonstrating the mechanisms of neuroprotection against brain injury using in vivo or in vitro models of animals as well as in clinical settings. The issues in a paper should be supported by sufficient data or evidence. Prof. Bae Hwan Lee Guest Editor

Keywords

global cerebral ischemia --- amiloride --- sodium–hydrogen exchanger-1 --- zinc --- neuronal death --- neuroprotection --- neurodegenerative disorder --- choline acetyltransferase (ChAT) --- trimethyltin (TMT) --- bean phosphatidylserine (Bean-PS) --- brain-derived neurotrophic factor --- moderate hypoxia --- physical exercise --- psychomotor function --- reaction time --- cortisol --- catecholamines --- nitrite --- endotheline-1 --- lactate --- pyridoxine deficiency --- ischemia --- gerbil --- homocysteine --- cell death --- glia --- neurogenesis --- N-acetyl-l-cysteine --- transient receptor potential melastatin 2 --- neurodegeneration --- Alzheimer’s disease --- metabolic disease --- adiponectin --- insulin --- antioxidants --- stroke --- preventive gene therapy --- adenoviral vector --- VEGF --- GDNF --- NCAM --- human umbilical cord blood mononuclear cells --- antioxidant --- brain --- neurodegenerative disease --- oxidative stress --- PGC-1α --- vascular endothelial growth factor --- vascular endothelial growth factor receptor 2 --- PI3K/AKT --- MEK/ERK --- status epilepticus --- hippocampus --- middle cerebral artery occlusion --- reperfusion injury --- lipid emulsion --- excitotoxicity --- apoptosis --- GPR4 receptor --- MPP+ --- Parkinson’s disease --- CRISPR/cas9 --- ischemic stroke --- blood brain barrier --- nanoparticle-based drug delivery --- brain targeting --- BDNF --- miRNAs --- synaptic plasticity --- depression --- glioblastoma --- astrocytes --- astrocytic networks --- connexin 43 --- calcium activity --- neural injury --- nimodipine --- subarachnoid haemorrhage --- acid-sensing ion channels --- oxygen-glucose deprivation --- liver growth factor --- inflammation --- microglia --- Tg2576 transgenic mice --- amyloid-beta --- oculomotor system --- trophic factors --- motoneurons --- axotomy --- amyotrophic lateral sclerosis --- electroneutral transport --- cation-chloride cotransporters --- KCCs --- NKCCs --- WNK-SPAK/OSR1 --- ascorbic acid --- aging --- organotypic hippocampal slice culture --- n/a --- sodium-hydrogen exchanger-1 --- Alzheimer's disease --- Parkinson's disease

Listing 1 - 10 of 13 << page
of 2
>>
Sort by