Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2021 (3)

Listing 1 - 6 of 6
Sort by

Book
Advances in the Catalytic Conversion of Biomass Components to Ester Derivatives: Challenges and Opportunities
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomass has received significant attention as a sustainable feedstock that can replace diminishing fossil fuels in the production of value-added chemicals and energy. Many new catalytic technologies have been developed for the conversion of biomass feedstocks into valuable biofuels and bioproducts. However, many of these still suffer from several disadvantages, such as weak catalytic performance, harsh reaction conditions, a high processing cost, and questionable sustainability, which limit their further applicability/development in the immediate future. In this context, the esterification of carboxylic acids represents a very valuable solution to these problems, requiring mild reaction conditions and being advantageously integrable with many existing processes of biomass conversion. An emblematic example is the acid-catalyzed hydrothermal route for levulinic acid production, already upgraded to that of higher value alkyl levulinates, obtained by esterification or directly by biomass alcoholysis. Many other chemical processes benefit from esterification, such as the synthesis of biodiesel, which includes monoalkyl esters of long-chain fatty acids prepared from renewable vegetable oils and animal fats, or that of cellulose esters, mainly acetates, for textile uses. Even pyrolysis bio-oil should be stabilized by esterification to neutralize the acidity of carboxylic acids and moderate the reactivity of other typical biomass-derived compounds, such as sugars, furans, aldehydes, and phenolics. This Special Issue reports on the recent main advances in the homogeneous/heterogeneous catalytic conversion of model/real biomass components into ester derivatives that are extremely attractive for both the academic and industrial fields. Dr. Domenico Licursi Guest Editor


Book
Advances in the Catalytic Conversion of Biomass Components to Ester Derivatives: Challenges and Opportunities
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomass has received significant attention as a sustainable feedstock that can replace diminishing fossil fuels in the production of value-added chemicals and energy. Many new catalytic technologies have been developed for the conversion of biomass feedstocks into valuable biofuels and bioproducts. However, many of these still suffer from several disadvantages, such as weak catalytic performance, harsh reaction conditions, a high processing cost, and questionable sustainability, which limit their further applicability/development in the immediate future. In this context, the esterification of carboxylic acids represents a very valuable solution to these problems, requiring mild reaction conditions and being advantageously integrable with many existing processes of biomass conversion. An emblematic example is the acid-catalyzed hydrothermal route for levulinic acid production, already upgraded to that of higher value alkyl levulinates, obtained by esterification or directly by biomass alcoholysis. Many other chemical processes benefit from esterification, such as the synthesis of biodiesel, which includes monoalkyl esters of long-chain fatty acids prepared from renewable vegetable oils and animal fats, or that of cellulose esters, mainly acetates, for textile uses. Even pyrolysis bio-oil should be stabilized by esterification to neutralize the acidity of carboxylic acids and moderate the reactivity of other typical biomass-derived compounds, such as sugars, furans, aldehydes, and phenolics. This Special Issue reports on the recent main advances in the homogeneous/heterogeneous catalytic conversion of model/real biomass components into ester derivatives that are extremely attractive for both the academic and industrial fields. Dr. Domenico Licursi Guest Editor


Book
Advances in the Catalytic Conversion of Biomass Components to Ester Derivatives: Challenges and Opportunities
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomass has received significant attention as a sustainable feedstock that can replace diminishing fossil fuels in the production of value-added chemicals and energy. Many new catalytic technologies have been developed for the conversion of biomass feedstocks into valuable biofuels and bioproducts. However, many of these still suffer from several disadvantages, such as weak catalytic performance, harsh reaction conditions, a high processing cost, and questionable sustainability, which limit their further applicability/development in the immediate future. In this context, the esterification of carboxylic acids represents a very valuable solution to these problems, requiring mild reaction conditions and being advantageously integrable with many existing processes of biomass conversion. An emblematic example is the acid-catalyzed hydrothermal route for levulinic acid production, already upgraded to that of higher value alkyl levulinates, obtained by esterification or directly by biomass alcoholysis. Many other chemical processes benefit from esterification, such as the synthesis of biodiesel, which includes monoalkyl esters of long-chain fatty acids prepared from renewable vegetable oils and animal fats, or that of cellulose esters, mainly acetates, for textile uses. Even pyrolysis bio-oil should be stabilized by esterification to neutralize the acidity of carboxylic acids and moderate the reactivity of other typical biomass-derived compounds, such as sugars, furans, aldehydes, and phenolics. This Special Issue reports on the recent main advances in the homogeneous/heterogeneous catalytic conversion of model/real biomass components into ester derivatives that are extremely attractive for both the academic and industrial fields. Dr. Domenico Licursi Guest Editor


Book
Applied Biocatalysis in Europe: A Sustainable Tool for Improving Life Quality
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue


Book
Applied Biocatalysis in Europe: A Sustainable Tool for Improving Life Quality
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue


Book
Applied Biocatalysis in Europe: A Sustainable Tool for Improving Life Quality
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue

Listing 1 - 6 of 6
Sort by