Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control.
History of engineering & technology --- fuel cell --- power control --- multi-objective optimization --- equivalent consumption minimization strategy --- firefly algorithm --- hybrid light rail vehicle --- solar energy --- Fresnel collector --- model predictive control --- fuzzy algorithm --- hybrid systems --- shipboard microgrids --- photovoltaic (PV) systems --- energy storage technologies --- microgrids --- hybrid energy storage systems (HESS) --- floating offshore wind turbine --- aerodynamic platform stabiliser --- wave rejection --- feedback loop --- control --- optimisation --- energy storage --- pumped storage hydro --- ternary pumped storage hydro --- dynamic simulation --- dynamic modeling --- inertia --- renewable energy --- power system --- primary control --- BESS --- microgrid --- Grid Forming --- Grid Support --- Inverter Control --- DIgSILENT PowerFactory --- EMT simulations --- eco-friendliness --- smart railway --- smart electrical infrastructure --- control algorithm --- regenerative braking energy --- smart grid --- optimization --- energy management system --- interconnected buildings --- renewable resources --- multi-level --- aggregator --- wind-diesel power plant --- intelligent control system --- diesel-generator set --- internal combustion engine --- artificial neural network --- fuel economy --- co-simulation --- SCADA --- operator training --- building energy management system --- simulation --- equivalent electric circuit
Choose an application
This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control.
fuel cell --- power control --- multi-objective optimization --- equivalent consumption minimization strategy --- firefly algorithm --- hybrid light rail vehicle --- solar energy --- Fresnel collector --- model predictive control --- fuzzy algorithm --- hybrid systems --- shipboard microgrids --- photovoltaic (PV) systems --- energy storage technologies --- microgrids --- hybrid energy storage systems (HESS) --- floating offshore wind turbine --- aerodynamic platform stabiliser --- wave rejection --- feedback loop --- control --- optimisation --- energy storage --- pumped storage hydro --- ternary pumped storage hydro --- dynamic simulation --- dynamic modeling --- inertia --- renewable energy --- power system --- primary control --- BESS --- microgrid --- Grid Forming --- Grid Support --- Inverter Control --- DIgSILENT PowerFactory --- EMT simulations --- eco-friendliness --- smart railway --- smart electrical infrastructure --- control algorithm --- regenerative braking energy --- smart grid --- optimization --- energy management system --- interconnected buildings --- renewable resources --- multi-level --- aggregator --- wind-diesel power plant --- intelligent control system --- diesel-generator set --- internal combustion engine --- artificial neural network --- fuel economy --- co-simulation --- SCADA --- operator training --- building energy management system --- simulation --- equivalent electric circuit
Choose an application
According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.
independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- n/a
Choose an application
According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.
Technology: general issues --- History of engineering & technology --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake
Choose an application
This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control.
History of engineering & technology --- fuel cell --- power control --- multi-objective optimization --- equivalent consumption minimization strategy --- firefly algorithm --- hybrid light rail vehicle --- solar energy --- Fresnel collector --- model predictive control --- fuzzy algorithm --- hybrid systems --- shipboard microgrids --- photovoltaic (PV) systems --- energy storage technologies --- microgrids --- hybrid energy storage systems (HESS) --- floating offshore wind turbine --- aerodynamic platform stabiliser --- wave rejection --- feedback loop --- control --- optimisation --- energy storage --- pumped storage hydro --- ternary pumped storage hydro --- dynamic simulation --- dynamic modeling --- inertia --- renewable energy --- power system --- primary control --- BESS --- microgrid --- Grid Forming --- Grid Support --- Inverter Control --- DIgSILENT PowerFactory --- EMT simulations --- eco-friendliness --- smart railway --- smart electrical infrastructure --- control algorithm --- regenerative braking energy --- smart grid --- optimization --- energy management system --- interconnected buildings --- renewable resources --- multi-level --- aggregator --- wind-diesel power plant --- intelligent control system --- diesel-generator set --- internal combustion engine --- artificial neural network --- fuel economy --- co-simulation --- SCADA --- operator training --- building energy management system --- simulation --- equivalent electric circuit --- fuel cell --- power control --- multi-objective optimization --- equivalent consumption minimization strategy --- firefly algorithm --- hybrid light rail vehicle --- solar energy --- Fresnel collector --- model predictive control --- fuzzy algorithm --- hybrid systems --- shipboard microgrids --- photovoltaic (PV) systems --- energy storage technologies --- microgrids --- hybrid energy storage systems (HESS) --- floating offshore wind turbine --- aerodynamic platform stabiliser --- wave rejection --- feedback loop --- control --- optimisation --- energy storage --- pumped storage hydro --- ternary pumped storage hydro --- dynamic simulation --- dynamic modeling --- inertia --- renewable energy --- power system --- primary control --- BESS --- microgrid --- Grid Forming --- Grid Support --- Inverter Control --- DIgSILENT PowerFactory --- EMT simulations --- eco-friendliness --- smart railway --- smart electrical infrastructure --- control algorithm --- regenerative braking energy --- smart grid --- optimization --- energy management system --- interconnected buildings --- renewable resources --- multi-level --- aggregator --- wind-diesel power plant --- intelligent control system --- diesel-generator set --- internal combustion engine --- artificial neural network --- fuel economy --- co-simulation --- SCADA --- operator training --- building energy management system --- simulation --- equivalent electric circuit
Choose an application
According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.
Technology: general issues --- History of engineering & technology --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- n/a
Choose an application
The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.
History of engineering & technology --- lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals
Choose an application
Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.
Technology: general issues --- electric bus --- vehicle selection --- road operation test --- sustainable development --- more electric aircraft (MEA) --- multilevel converter --- high power density --- electric vehicles (EVs) --- independent-drive technology --- deep reinforcement learning (DRL) --- optimal torque distribution --- wireless power transfer --- non-linear --- fast terminal sliding mode control --- power converters --- efficiency --- energy storage systems --- electrical power systems --- hydraulic power systems --- hydraulic accumulator --- ultracapacitor --- lithium-ion battery --- dual-polarization model --- fractional-order model --- SOC estimation --- hybrid Kalman filter --- vehicle–grid integration --- distribution network voltage regulation --- alternating direction method of multipliers --- railway transport --- eco-driving --- energy efficiency --- optimization algorithm --- power systems --- ancillary services --- EV motor inverter --- electrical installation --- on-board charger --- vehicle-to-home --- home energy management system --- hybrid electric bulldozer --- tracked vehicle --- control strategy --- adaptive control --- power smoothing --- electric vehicles --- public charging station --- bilevel model --- range constraint --- hybrid electric vehicles --- equivalent consumption minimization strategy --- power-split hybrid --- heavy-duty vehicles --- diesel engine --- natural gas engine --- hybrid powertrain --- supercapacitor --- fuel consumption --- mathematical modeling --- electric vehicle --- city bus --- gearbox --- transmission --- optimization --- hybrid electric vehicle --- power-split --- fuel economy --- particle swarm optimization --- route guidance strategies --- stochastic charging demands --- time-varying road network --- shift-by-wire (SBW) --- switched reluctance motor (SRM) --- non-uniform air-gap --- rotor hole placement --- torque ripple --- rotor structure --- electrical transport --- electrical vehicle --- marine transport --- railway --- battery electric vehicles --- signalized intersections --- energy-optimized vehicle trajectories --- vehicle dynamics model --- road freight transport --- vehicle stock turnover model --- deep decarbonization --- road freight vehicle --- electric-drive vehicle --- lithium-ion --- dQ/dV --- dV/dQ --- frequency regulation --- V2G --- G2V --- fault diagnosis --- PEM fuel cell system --- PFCM-ABC-SVM --- ultra-fast charging --- multimodule DC-DC converters --- dual active bridge DC-DC converter --- full-bridge phase-shift DC-DC converter --- input-series output-series --- input-series output-parallel --- input-parallel output-parallel --- input-parallel output-series --- input-series input-parallel output-series output-parallel --- battery aging --- plug-in electric vehicles --- energy management --- global optimization --- state of health --- particle swarm algorithm --- genetic algorithm --- simulation --- plug-in hybrid --- microgrid --- photovoltaic --- robust optimization --- stochastic optimization --- battery management systems --- battery fuel gauge --- state of charge --- power fade --- capacity fade --- robust estimation --- predictive control --- environmental impacts --- life cycle assessment --- review --- anti-lock braking system --- fuzzy logic system --- controller --- vehicle --- traffic signal control --- cost model --- total cost of ownership --- TCO --- charging strategy --- public transport --- sustainability --- reused battery --- adaptive control theory --- battery management system (BMS) --- internal resistances --- open-circuit voltage --- policy incentive --- public charging infrastructure --- power grid --- grid-side effects --- photovoltaic potentials --- controlled charging --- electric power systems --- transportation --- PV --- inverter
Choose an application
The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.
lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals
Choose an application
Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.
electric bus --- vehicle selection --- road operation test --- sustainable development --- more electric aircraft (MEA) --- multilevel converter --- high power density --- electric vehicles (EVs) --- independent-drive technology --- deep reinforcement learning (DRL) --- optimal torque distribution --- wireless power transfer --- non-linear --- fast terminal sliding mode control --- power converters --- efficiency --- energy storage systems --- electrical power systems --- hydraulic power systems --- hydraulic accumulator --- ultracapacitor --- lithium-ion battery --- dual-polarization model --- fractional-order model --- SOC estimation --- hybrid Kalman filter --- vehicle–grid integration --- distribution network voltage regulation --- alternating direction method of multipliers --- railway transport --- eco-driving --- energy efficiency --- optimization algorithm --- power systems --- ancillary services --- EV motor inverter --- electrical installation --- on-board charger --- vehicle-to-home --- home energy management system --- hybrid electric bulldozer --- tracked vehicle --- control strategy --- adaptive control --- power smoothing --- electric vehicles --- public charging station --- bilevel model --- range constraint --- hybrid electric vehicles --- equivalent consumption minimization strategy --- power-split hybrid --- heavy-duty vehicles --- diesel engine --- natural gas engine --- hybrid powertrain --- supercapacitor --- fuel consumption --- mathematical modeling --- electric vehicle --- city bus --- gearbox --- transmission --- optimization --- hybrid electric vehicle --- power-split --- fuel economy --- particle swarm optimization --- route guidance strategies --- stochastic charging demands --- time-varying road network --- shift-by-wire (SBW) --- switched reluctance motor (SRM) --- non-uniform air-gap --- rotor hole placement --- torque ripple --- rotor structure --- electrical transport --- electrical vehicle --- marine transport --- railway --- battery electric vehicles --- signalized intersections --- energy-optimized vehicle trajectories --- vehicle dynamics model --- road freight transport --- vehicle stock turnover model --- deep decarbonization --- road freight vehicle --- electric-drive vehicle --- lithium-ion --- dQ/dV --- dV/dQ --- frequency regulation --- V2G --- G2V --- fault diagnosis --- PEM fuel cell system --- PFCM-ABC-SVM --- ultra-fast charging --- multimodule DC-DC converters --- dual active bridge DC-DC converter --- full-bridge phase-shift DC-DC converter --- input-series output-series --- input-series output-parallel --- input-parallel output-parallel --- input-parallel output-series --- input-series input-parallel output-series output-parallel --- battery aging --- plug-in electric vehicles --- energy management --- global optimization --- state of health --- particle swarm algorithm --- genetic algorithm --- simulation --- plug-in hybrid --- microgrid --- photovoltaic --- robust optimization --- stochastic optimization --- battery management systems --- battery fuel gauge --- state of charge --- power fade --- capacity fade --- robust estimation --- predictive control --- environmental impacts --- life cycle assessment --- review --- anti-lock braking system --- fuzzy logic system --- controller --- vehicle --- traffic signal control --- cost model --- total cost of ownership --- TCO --- charging strategy --- public transport --- sustainability --- reused battery --- adaptive control theory --- battery management system (BMS) --- internal resistances --- open-circuit voltage --- policy incentive --- public charging infrastructure --- power grid --- grid-side effects --- photovoltaic potentials --- controlled charging --- electric power systems --- transportation --- PV --- inverter
Listing 1 - 10 of 12 | << page >> |
Sort by
|