Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
This Special Issue reprint book features a broad scope of contributions that highlight current accomplishments and provide readers with some perspective on the direction of research on magnesium alloys in the near future with respect to global challenges. The papers included in the book report on state-of-the-art methods and research trends regarding the microstructure, properties and industrial application of magnesium alloys for use in lightweight structures across several industries.
Technology: general issues --- History of engineering & technology --- Materials science --- magnesium alloys --- interface reaction --- diffusion --- intermetallic phases --- cyclic expansion extrusion with asymmetrical extrusion cavity --- AZ31B alloy --- microstructure --- texture --- mechanical properties --- magnesium wire --- extrusion --- characterization --- wrapping test --- AZ-series --- EBSD --- magnesium --- deformation twinning --- damage initiation --- rolling --- strength --- segregation --- precipitate --- twinning --- modeling --- void --- rigid inclusion --- magnesium-rare earth alloy --- recrystallization --- selective grain growth --- Mg-RE alloys --- in situ diffraction --- crystal plasticity --- magnesium single crystal --- sheets --- formability --- non-flammability --- indirect extrusion --- magnesium alloy --- fatigue --- equal-channel angular pressing --- grain refinement --- S–N curve --- stent --- n/a --- S-N curve
Choose an application
This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.
History of engineering & technology --- magnesium alloy --- ECAP --- texture --- mechanical properties --- Co-based alloy --- tribological properties --- wear --- microstructure --- selective laser sintering (SLS) --- powder injection molding (PIM) --- medium-carbon low-alloy steel --- lath martensite --- effective grain size --- strength --- carbon content --- hot-work die steel --- thermal stability --- carbide --- dislocation --- tempering kinetics --- AZ91 magnesium alloys --- age-hardening response --- microstructure evolution --- β-Mg17Al12 phase --- artificial neural network model --- AA6063 --- fly ash --- response surface methodology --- wear rate --- friction coefficient --- Al-Cu-Li-Mg-Ag alloy --- constitutive equation --- EBSD --- recrystallization --- Cu-Mg alloy --- equal channel angular pressing (ECAP) --- metallic alloys --- chemical composition --- treatment
Choose an application
This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.
magnesium alloy --- ECAP --- texture --- mechanical properties --- Co-based alloy --- tribological properties --- wear --- microstructure --- selective laser sintering (SLS) --- powder injection molding (PIM) --- medium-carbon low-alloy steel --- lath martensite --- effective grain size --- strength --- carbon content --- hot-work die steel --- thermal stability --- carbide --- dislocation --- tempering kinetics --- AZ91 magnesium alloys --- age-hardening response --- microstructure evolution --- β-Mg17Al12 phase --- artificial neural network model --- AA6063 --- fly ash --- response surface methodology --- wear rate --- friction coefficient --- Al-Cu-Li-Mg-Ag alloy --- constitutive equation --- EBSD --- recrystallization --- Cu-Mg alloy --- equal channel angular pressing (ECAP) --- metallic alloys --- chemical composition --- treatment
Choose an application
This Special Issue reprint book features a broad scope of contributions that highlight current accomplishments and provide readers with some perspective on the direction of research on magnesium alloys in the near future with respect to global challenges. The papers included in the book report on state-of-the-art methods and research trends regarding the microstructure, properties and industrial application of magnesium alloys for use in lightweight structures across several industries.
magnesium alloys --- interface reaction --- diffusion --- intermetallic phases --- cyclic expansion extrusion with asymmetrical extrusion cavity --- AZ31B alloy --- microstructure --- texture --- mechanical properties --- magnesium wire --- extrusion --- characterization --- wrapping test --- AZ-series --- EBSD --- magnesium --- deformation twinning --- damage initiation --- rolling --- strength --- segregation --- precipitate --- twinning --- modeling --- void --- rigid inclusion --- magnesium-rare earth alloy --- recrystallization --- selective grain growth --- Mg-RE alloys --- in situ diffraction --- crystal plasticity --- magnesium single crystal --- sheets --- formability --- non-flammability --- indirect extrusion --- magnesium alloy --- fatigue --- equal-channel angular pressing --- grain refinement --- S–N curve --- stent --- n/a --- S-N curve
Choose an application
Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.
History of engineering & technology --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating-bending fatigue --- tension-compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti-Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating-bending fatigue --- tension-compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti-Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion
Choose an application
Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.
History of engineering & technology --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating–bending fatigue --- tension–compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti–Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- n/a --- rotating-bending fatigue --- tension-compression fatigue --- Ti-Fe
Choose an application
Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.
Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating–bending fatigue --- tension–compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti–Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- n/a --- rotating-bending fatigue --- tension-compression fatigue --- Ti-Fe
Choose an application
This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.
History of engineering & technology --- magnesium alloy --- ECAP --- texture --- mechanical properties --- Co-based alloy --- tribological properties --- wear --- microstructure --- selective laser sintering (SLS) --- powder injection molding (PIM) --- medium-carbon low-alloy steel --- lath martensite --- effective grain size --- strength --- carbon content --- hot-work die steel --- thermal stability --- carbide --- dislocation --- tempering kinetics --- AZ91 magnesium alloys --- age-hardening response --- microstructure evolution --- β-Mg17Al12 phase --- artificial neural network model --- AA6063 --- fly ash --- response surface methodology --- wear rate --- friction coefficient --- Al-Cu-Li-Mg-Ag alloy --- constitutive equation --- EBSD --- recrystallization --- Cu-Mg alloy --- equal channel angular pressing (ECAP) --- metallic alloys --- chemical composition --- treatment --- magnesium alloy --- ECAP --- texture --- mechanical properties --- Co-based alloy --- tribological properties --- wear --- microstructure --- selective laser sintering (SLS) --- powder injection molding (PIM) --- medium-carbon low-alloy steel --- lath martensite --- effective grain size --- strength --- carbon content --- hot-work die steel --- thermal stability --- carbide --- dislocation --- tempering kinetics --- AZ91 magnesium alloys --- age-hardening response --- microstructure evolution --- β-Mg17Al12 phase --- artificial neural network model --- AA6063 --- fly ash --- response surface methodology --- wear rate --- friction coefficient --- Al-Cu-Li-Mg-Ag alloy --- constitutive equation --- EBSD --- recrystallization --- Cu-Mg alloy --- equal channel angular pressing (ECAP) --- metallic alloys --- chemical composition --- treatment
Choose an application
This Special Issue reprint book features a broad scope of contributions that highlight current accomplishments and provide readers with some perspective on the direction of research on magnesium alloys in the near future with respect to global challenges. The papers included in the book report on state-of-the-art methods and research trends regarding the microstructure, properties and industrial application of magnesium alloys for use in lightweight structures across several industries.
Technology: general issues --- History of engineering & technology --- Materials science --- magnesium alloys --- interface reaction --- diffusion --- intermetallic phases --- cyclic expansion extrusion with asymmetrical extrusion cavity --- AZ31B alloy --- microstructure --- texture --- mechanical properties --- magnesium wire --- extrusion --- characterization --- wrapping test --- AZ-series --- EBSD --- magnesium --- deformation twinning --- damage initiation --- rolling --- strength --- segregation --- precipitate --- twinning --- modeling --- void --- rigid inclusion --- magnesium-rare earth alloy --- recrystallization --- selective grain growth --- Mg-RE alloys --- in situ diffraction --- crystal plasticity --- magnesium single crystal --- sheets --- formability --- non-flammability --- indirect extrusion --- magnesium alloy --- fatigue --- equal-channel angular pressing --- grain refinement --- S-N curve --- stent --- magnesium alloys --- interface reaction --- diffusion --- intermetallic phases --- cyclic expansion extrusion with asymmetrical extrusion cavity --- AZ31B alloy --- microstructure --- texture --- mechanical properties --- magnesium wire --- extrusion --- characterization --- wrapping test --- AZ-series --- EBSD --- magnesium --- deformation twinning --- damage initiation --- rolling --- strength --- segregation --- precipitate --- twinning --- modeling --- void --- rigid inclusion --- magnesium-rare earth alloy --- recrystallization --- selective grain growth --- Mg-RE alloys --- in situ diffraction --- crystal plasticity --- magnesium single crystal --- sheets --- formability --- non-flammability --- indirect extrusion --- magnesium alloy --- fatigue --- equal-channel angular pressing --- grain refinement --- S-N curve --- stent
Choose an application
There is growing interest in light metallic alloys for a wide number of applications owing to their processing efficiency, processability, long service life, and environmental sustainability. Aluminum, magnesium, and titanium alloys are addressed in this Special Issue, however, the predominant role played by aluminum. The collection of papers published here covers a wide range of topics that generally characterize the performance of the alloys after manufacturing by conventional and innovative processing routes.
fatigue properties --- hydroforming --- AlSi12Cu1(Fe) --- magnesium alloy --- microstructure --- Ti6Al4V titanium alloy --- FEM simulation --- aging treatment --- AlSi11Cu2(Fe) --- titanium aluminides --- commercially pure titanium --- hot working --- quenching process --- hot rolling --- 7003 alloy --- compressive strength --- plastic strain --- precipitation --- constitutive equations --- processing temperature --- material property --- hot forging --- wear resistance --- hot deformation behavior --- solid solution hardening --- microstructural changes --- fatigue behavior --- hardening criteria --- AlSi10Mg alloy --- 7XXX Al alloy --- hot compression --- creep --- Al-5Mg wire electrode --- ultra-fine grain --- mechanical properties --- cooling rate --- residual stress --- thermomechanical treatment --- remanufacturing --- hot workability --- activation energy --- mechanical alloying --- selective laser melting --- alloy --- Al alloy --- dynamic recrystallization --- springback --- wire feedability --- cold rolling --- spray deposited --- rotary-die equal-channel angular pressing --- adhesion strength --- microarc oxidation --- aluminum alloy --- Zr --- processing map --- Al–Si alloy --- UNS A92024-T3 --- Al-Si-Cu alloys --- sludge --- high pressure die casting --- fractography --- 2024-T4 aluminum alloys --- anode pulse-width --- consolidation --- high temperature --- AlSi9Cu3(Fe) --- FEP --- resistance spot welding --- intermetallics --- tensile properties --- tensile property --- iron
Listing 1 - 10 of 14 | << page >> |
Sort by
|