Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Enzymes --- Enzymes. --- Biocatalysts --- Ferments --- Soluble ferments --- enzymes --- enzyme kinetics --- enzyme regulation --- protein engineering --- Catalysts --- Proteins --- Enzymology --- Molecular Mechanisms of Pharmacological Action --- General biochemistry --- Biology --- enzymen --- Biocatalyst --- Enzyme
Choose an application
Enzymes --- Regulation --- Enzymes. --- Régulation --- Périodiques. --- Métabolisme. --- Regulation. --- Enzyme regulation --- Regulation of enzyme activity --- Biocatalysts --- Ferments --- Soluble ferments --- metabolism. --- Molecular Mechanisms of Pharmacological Action --- Biological control systems --- Catalysts --- Proteins --- Enzymology --- Biocatalyst --- Enzyme --- enzyme. --- Periodicals. --- Metabolism. --- metabolism --- Metabolism
Choose an application
This textbook presents the latest information on a topic vital to our understanding of metabolism. It concentrates on the ways that enzymes are reversibly regulated by ligand binding, covalent modification or other means. The text will provide a ready source of up-to-date information for undergraduate students.
Enzymology --- Enzymes --- Enzyme Activation --- Regulation --- metabolism --- Enzyme Activation. --- 577.15 --- 57.042.5 --- -#ABIB:aimm --- Biocatalysts --- Ferments --- Soluble ferments --- Catalysts --- Proteins --- Activation, Enzyme --- Activations, Enzyme --- Enzyme Activations --- Enzyme Activators --- metabolism. --- Enzymes. Catalysts of biological reactions. Enzymology --- Activators. Cofactors --- Regulation. --- 57.042.5 Activators. Cofactors --- 577.15 Enzymes. Catalysts of biological reactions. Enzymology --- #ABIB:aimm --- Enzyme regulation --- Regulation of enzyme activity --- Biological control systems --- Enzymes - Regulation --- Enzymes - metabolism
Choose an application
This collection of review articles describes the structure, function and mechanism of individual protein methyltransferase enzymes including protein lysine methyltransferases, protein arginine methyltransferases, and also the less abundant protein histidine methyltransferases and protein N-terminal end methyltransferases. The topics covered in the individual reviews include structural aspects (domain architecture, homologs and paralogs, and structure), biochemical properties (mechanism, sequence specificity, product specificity, regulation, and histone and non-histone substrates), cellular features (subcellular localization, expression patterns, cellular roles and function, biological effects of substrate protein methylation, connection to cell signaling pathways, and connection to chromatin regulation) and their role in diseases. This review book is a useful resource for scientists working on protein methylation and protein methyltransferases and those interested in joining this emerging research field.
Research & information: general --- Biology, life sciences --- Biochemistry --- protein lysine methylation --- H3K9 methylation --- PKMT --- enzyme specificity --- enzyme regulation --- heterochromatin --- protein post-translational modification --- NSD3 --- WHSC1L1 --- structure and function --- protein arginine methylation --- PRMT7 --- epigenetics --- cancer --- immunity --- pluripotency --- SETDB1 --- methyltransferase --- schizophrenia --- Huntington’s disease --- Rett syndrome --- Prader–Willi syndrome --- congenital heart diseases --- inflammatory bowel disease --- MLL2 --- structure --- H3K4me3 --- chromatin regulation --- disease --- dystonia --- NSD1 --- H3K36 --- SOTOS --- NUP98-NSD1 --- AML --- PRMT6 --- post-translational modification --- H3R2me2a --- SETD3 --- posttranslational modifications --- protein histidine methylation --- actin --- polymerization --- cytoskeleton --- enteroviruses --- oncogenesis --- PRMT5 --- cardiovascular disease --- neurodegenerative diseases --- diabetes --- inflammation --- G9a --- GLP --- EHMT2 --- EHMT1 --- post translational modification --- lysine methylation --- N-terminal methylation --- translation --- eEF1A --- METTL13 --- neuron --- synapse --- dendritic spine --- actin cytoskeleton --- GTPase --- PRMT1 --- arginine methylation --- H4R3 methylation --- transcriptional regulation --- cell signaling --- DNA damage repair --- PRMT2 --- SH3 --- SETMAR --- Metnase --- H3K36me2 --- Hsmar1 --- non-homologous end joining repair --- NHEJ --- transposase --- transposable elements --- histone --- SET7/9 --- SETD7 --- lysine-specific methyltransferase (PKMT) --- cell proliferation --- stress response --- post-translational protein modification --- n/a --- Huntington's disease --- Prader-Willi syndrome
Choose an application
This collection of review articles describes the structure, function and mechanism of individual protein methyltransferase enzymes including protein lysine methyltransferases, protein arginine methyltransferases, and also the less abundant protein histidine methyltransferases and protein N-terminal end methyltransferases. The topics covered in the individual reviews include structural aspects (domain architecture, homologs and paralogs, and structure), biochemical properties (mechanism, sequence specificity, product specificity, regulation, and histone and non-histone substrates), cellular features (subcellular localization, expression patterns, cellular roles and function, biological effects of substrate protein methylation, connection to cell signaling pathways, and connection to chromatin regulation) and their role in diseases. This review book is a useful resource for scientists working on protein methylation and protein methyltransferases and those interested in joining this emerging research field.
protein lysine methylation --- H3K9 methylation --- PKMT --- enzyme specificity --- enzyme regulation --- heterochromatin --- protein post-translational modification --- NSD3 --- WHSC1L1 --- structure and function --- protein arginine methylation --- PRMT7 --- epigenetics --- cancer --- immunity --- pluripotency --- SETDB1 --- methyltransferase --- schizophrenia --- Huntington’s disease --- Rett syndrome --- Prader–Willi syndrome --- congenital heart diseases --- inflammatory bowel disease --- MLL2 --- structure --- H3K4me3 --- chromatin regulation --- disease --- dystonia --- NSD1 --- H3K36 --- SOTOS --- NUP98-NSD1 --- AML --- PRMT6 --- post-translational modification --- H3R2me2a --- SETD3 --- posttranslational modifications --- protein histidine methylation --- actin --- polymerization --- cytoskeleton --- enteroviruses --- oncogenesis --- PRMT5 --- cardiovascular disease --- neurodegenerative diseases --- diabetes --- inflammation --- G9a --- GLP --- EHMT2 --- EHMT1 --- post translational modification --- lysine methylation --- N-terminal methylation --- translation --- eEF1A --- METTL13 --- neuron --- synapse --- dendritic spine --- actin cytoskeleton --- GTPase --- PRMT1 --- arginine methylation --- H4R3 methylation --- transcriptional regulation --- cell signaling --- DNA damage repair --- PRMT2 --- SH3 --- SETMAR --- Metnase --- H3K36me2 --- Hsmar1 --- non-homologous end joining repair --- NHEJ --- transposase --- transposable elements --- histone --- SET7/9 --- SETD7 --- lysine-specific methyltransferase (PKMT) --- cell proliferation --- stress response --- post-translational protein modification --- n/a --- Huntington's disease --- Prader-Willi syndrome
Choose an application
This collection of review articles describes the structure, function and mechanism of individual protein methyltransferase enzymes including protein lysine methyltransferases, protein arginine methyltransferases, and also the less abundant protein histidine methyltransferases and protein N-terminal end methyltransferases. The topics covered in the individual reviews include structural aspects (domain architecture, homologs and paralogs, and structure), biochemical properties (mechanism, sequence specificity, product specificity, regulation, and histone and non-histone substrates), cellular features (subcellular localization, expression patterns, cellular roles and function, biological effects of substrate protein methylation, connection to cell signaling pathways, and connection to chromatin regulation) and their role in diseases. This review book is a useful resource for scientists working on protein methylation and protein methyltransferases and those interested in joining this emerging research field.
Research & information: general --- Biology, life sciences --- Biochemistry --- protein lysine methylation --- H3K9 methylation --- PKMT --- enzyme specificity --- enzyme regulation --- heterochromatin --- protein post-translational modification --- NSD3 --- WHSC1L1 --- structure and function --- protein arginine methylation --- PRMT7 --- epigenetics --- cancer --- immunity --- pluripotency --- SETDB1 --- methyltransferase --- schizophrenia --- Huntington's disease --- Rett syndrome --- Prader-Willi syndrome --- congenital heart diseases --- inflammatory bowel disease --- MLL2 --- structure --- H3K4me3 --- chromatin regulation --- disease --- dystonia --- NSD1 --- H3K36 --- SOTOS --- NUP98-NSD1 --- AML --- PRMT6 --- post-translational modification --- H3R2me2a --- SETD3 --- posttranslational modifications --- protein histidine methylation --- actin --- polymerization --- cytoskeleton --- enteroviruses --- oncogenesis --- PRMT5 --- cardiovascular disease --- neurodegenerative diseases --- diabetes --- inflammation --- G9a --- GLP --- EHMT2 --- EHMT1 --- post translational modification --- lysine methylation --- N-terminal methylation --- translation --- eEF1A --- METTL13 --- neuron --- synapse --- dendritic spine --- actin cytoskeleton --- GTPase --- PRMT1 --- arginine methylation --- H4R3 methylation --- transcriptional regulation --- cell signaling --- DNA damage repair --- PRMT2 --- SH3 --- SETMAR --- Metnase --- H3K36me2 --- Hsmar1 --- non-homologous end joining repair --- NHEJ --- transposase --- transposable elements --- histone --- SET7/9 --- SETD7 --- lysine-specific methyltransferase (PKMT) --- cell proliferation --- stress response --- post-translational protein modification --- protein lysine methylation --- H3K9 methylation --- PKMT --- enzyme specificity --- enzyme regulation --- heterochromatin --- protein post-translational modification --- NSD3 --- WHSC1L1 --- structure and function --- protein arginine methylation --- PRMT7 --- epigenetics --- cancer --- immunity --- pluripotency --- SETDB1 --- methyltransferase --- schizophrenia --- Huntington's disease --- Rett syndrome --- Prader-Willi syndrome --- congenital heart diseases --- inflammatory bowel disease --- MLL2 --- structure --- H3K4me3 --- chromatin regulation --- disease --- dystonia --- NSD1 --- H3K36 --- SOTOS --- NUP98-NSD1 --- AML --- PRMT6 --- post-translational modification --- H3R2me2a --- SETD3 --- posttranslational modifications --- protein histidine methylation --- actin --- polymerization --- cytoskeleton --- enteroviruses --- oncogenesis --- PRMT5 --- cardiovascular disease --- neurodegenerative diseases --- diabetes --- inflammation --- G9a --- GLP --- EHMT2 --- EHMT1 --- post translational modification --- lysine methylation --- N-terminal methylation --- translation --- eEF1A --- METTL13 --- neuron --- synapse --- dendritic spine --- actin cytoskeleton --- GTPase --- PRMT1 --- arginine methylation --- H4R3 methylation --- transcriptional regulation --- cell signaling --- DNA damage repair --- PRMT2 --- SH3 --- SETMAR --- Metnase --- H3K36me2 --- Hsmar1 --- non-homologous end joining repair --- NHEJ --- transposase --- transposable elements --- histone --- SET7/9 --- SETD7 --- lysine-specific methyltransferase (PKMT) --- cell proliferation --- stress response --- post-translational protein modification
Choose an application
Nucleic acids --- Proteins --- Enzymes --- Physical biochemistry --- Macromolecules --- Ligand binding (Biochemistry) --- Protein folding --- Polypeptides --- Nucleic acid hybridization --- Catalysis --- DNA --- DNA-protein interactions --- RNA --- RNA-protein interactions --- Nucleic Acids --- 577.122 --- Gene Products, Protein --- Gene Proteins --- Protein --- Protein Gene Products --- Proteins, Gene --- Molecular Mechanisms of Pharmacological Action --- 577.122 Protein metabolism --- Protein metabolism --- Nucleic Acid --- Acid, Nucleic --- Acids, Nucleic --- Interactions, RNA-protein --- Protein-RNA interactions --- RNA-protein binding --- Protein binding --- Ribonucleic acid --- Ribose nucleic acid --- Ribose --- DNA-protein binding --- Interactions, DNA-protein --- Protein-DNA interactions --- DNA-ligand interactions --- Deoxyribonucleic acid --- Desoxyribonucleic acid --- Thymonucleic acid --- TNA (Nucleic acid) --- Deoxyribose --- Genes --- Activation (Chemistry) --- Chemistry, Physical and theoretical --- Surface chemistry --- Enzyme regulation --- Regulation of enzyme activity --- Biological control systems --- Cytogenetics --- Cytology --- Hybridization --- Polynucleotides --- Biomolecules --- Biopolymers --- Peptides --- Denaturation of proteins --- Protein denaturation --- Protein unfolding --- Unfolding of proteins --- Coagulation --- Folding of proteins --- Protein conformation --- Biocatalysts --- Ferments --- Soluble ferments --- Catalysts --- Enzymology --- Binding, Ligand (Biochemistry) --- Biochemistry --- Dye-ligand affinity chromatography --- Radioligand assay --- Molecules --- Supramolecular chemistry --- Biophysical chemistry --- Physical organic chemistry --- Proteids --- Proteomics --- Conformation --- Denaturation --- Structure --- Regulation --- Technique --- Unfolding --- Folding
Listing 1 - 7 of 7 |
Sort by
|