Listing 1 - 10 of 36 | << page >> |
Sort by
|
Choose an application
Bacterial infections cause millions of deaths globally, particularly in children and the elderly, and four of the 10 leading causes of death are infectious diseases in low- and middle-income countries. The continuous use of antibiotics has resulted in multi-resistant bacterial strains all over the world, such as Community-associated Methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamases (ESBLs), and, as expected, hospitals have become breeding grounds for human-associated microorganisms, especially in critical care units.
Research & information: general --- Biology, life sciences --- actinomycetes --- antibiotic biosynthesis --- silent biosynthetic pathways --- γ-butyrolactones --- HiTES --- translation inhibitors --- marine actinobacteria --- Streptomyces sp. --- enzyme inhibition --- antimicrobial --- antioxidant --- cytotoxicity --- GC-MS --- pyrrolopyrazines --- myxobacteria --- antivirals --- secondary metabolites --- HIV --- Ebola --- hepatitis viruses --- diversity --- uncultured --- new antibiotics --- Streptomyces --- polyketides --- secondary metabolite --- polyketide synthases (PKSs) --- actinomycetes --- antibiotic biosynthesis --- silent biosynthetic pathways --- γ-butyrolactones --- HiTES --- translation inhibitors --- marine actinobacteria --- Streptomyces sp. --- enzyme inhibition --- antimicrobial --- antioxidant --- cytotoxicity --- GC-MS --- pyrrolopyrazines --- myxobacteria --- antivirals --- secondary metabolites --- HIV --- Ebola --- hepatitis viruses --- diversity --- uncultured --- new antibiotics --- Streptomyces --- polyketides --- secondary metabolite --- polyketide synthases (PKSs)
Choose an application
Bacterial infections cause millions of deaths globally, particularly in children and the elderly, and four of the 10 leading causes of death are infectious diseases in low- and middle-income countries. The continuous use of antibiotics has resulted in multi-resistant bacterial strains all over the world, such as Community-associated Methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamases (ESBLs), and, as expected, hospitals have become breeding grounds for human-associated microorganisms, especially in critical care units.
actinomycetes --- antibiotic biosynthesis --- silent biosynthetic pathways --- γ-butyrolactones --- HiTES --- translation inhibitors --- marine actinobacteria --- Streptomyces sp. --- enzyme inhibition --- antimicrobial --- antioxidant --- cytotoxicity --- GC-MS --- pyrrolopyrazines --- myxobacteria --- antivirals --- secondary metabolites --- HIV --- Ebola --- hepatitis viruses --- diversity --- uncultured --- new antibiotics --- Streptomyces --- polyketides --- secondary metabolite --- polyketide synthases (PKSs)
Choose an application
Biosensors are analytical devices used for the detection of a chemical substance, or analyte, which combines a biological component with a physicochemical detector. Detection and quantification are based on the measurement of the biological interactions. The biological element of a biosensor may consist of tissues, microorganisms, organelles, cell receptors, enzymes, antibodies and nucleic acids. These devices have been shown to have a wide range of applications in a vast array of fields of research, including environmental monitoring, food analysis, drug detection and health and clinical assessment, and even security and safety. The current Special Issue, “Biosensors: 10th Anniversary Feature Papers”, addresses the existing knowledge gaps and aids the advancement of biosensing applications, in the form of six peer-reviewed research and review papers, detailing the most recent and innovative developments of biosensors.
Technology: general issues --- History of engineering & technology --- Materials science --- antioxidants --- biosensor --- nanomaterials --- vasodilator activity --- breast cancer screening --- imaging biomarker --- deep sparse autoencoder --- dimensionality reduction --- deep-learning features --- Bioassays --- high performance thin layer chromatography --- endocrine disrupting compounds --- fluorescent proteins --- wastewater --- electromagnetic piezoelectric acoustic sensor --- quartz --- adsorption --- diagnostics --- extracellular vesicle --- dithiocarbamate fungicides --- chromatography --- Raman spectroscopy --- sensors --- enzyme inhibition --- voltammetry --- biosensors --- tobacco mosaic virus (TMV) --- capacitive field-effect sensor --- bi-enzyme biosensor --- enzyme-logic gate --- urease --- penicillinase --- antioxidants --- biosensor --- nanomaterials --- vasodilator activity --- breast cancer screening --- imaging biomarker --- deep sparse autoencoder --- dimensionality reduction --- deep-learning features --- Bioassays --- high performance thin layer chromatography --- endocrine disrupting compounds --- fluorescent proteins --- wastewater --- electromagnetic piezoelectric acoustic sensor --- quartz --- adsorption --- diagnostics --- extracellular vesicle --- dithiocarbamate fungicides --- chromatography --- Raman spectroscopy --- sensors --- enzyme inhibition --- voltammetry --- biosensors --- tobacco mosaic virus (TMV) --- capacitive field-effect sensor --- bi-enzyme biosensor --- enzyme-logic gate --- urease --- penicillinase
Choose an application
Enzyme-mediated catalysis offers special advantages over chemical methods. First of all, enzymes are considered an environmentally friendly tool as they help to avoid the requirements of toxic chemicals and high energy. In addition, more feasible processes can be accomplished through enzymatic reactions owing to the enzyme’s innate properties related to high substrate specificity and selectivity. For this reason, biotechnological production of a wide range of products, such as alternative fuels and value-added biochemicals, has been commercially applicable with the aid of enzymes, either in isolated form or in the whole-cell system. In particular, enzymatic transformation of low-value but cheap/abundant starting materials (i.g. biomass) into high-value materials can facilitate the circular and sustainable bioeconomy. This Special Issue on “Enzyme Catalysis: Advances, Techniques, and Outlooks” consists of six articles, which address diverse industrially relevant enzymes with applications in foods, detergent, cosmetics, medicine, etc. A robust methodology related to enzyme kinetics is also addressed.
Technology: general issues --- History of engineering & technology --- CYP102A1 --- atorvastatin --- 4-hydroxy atorvastatin --- hydrogen peroxide --- P450 peroxygenase --- NADPH --- enzyme inhibition --- integrated Michaelis-Menten equations --- reaction product inhibition --- two mutually exclusive inhibitors --- protease --- detergent --- surfactant --- cleaning --- glucose isomerase --- xylose isomerase --- high-fructose corn syrup --- HFCS --- bioethanol --- structure --- l-fucose isomerase --- l-fucose --- l-fuculose --- extremophile --- halothermophilic bacteria --- Halothermothrix orenii --- lysozyme --- muramidase --- N-acetylmuramide glycanhydrolase --- human --- N-acetyl-β-d-glucosaminidase --- NAG --- crystal structure --- CYP102A1 --- atorvastatin --- 4-hydroxy atorvastatin --- hydrogen peroxide --- P450 peroxygenase --- NADPH --- enzyme inhibition --- integrated Michaelis-Menten equations --- reaction product inhibition --- two mutually exclusive inhibitors --- protease --- detergent --- surfactant --- cleaning --- glucose isomerase --- xylose isomerase --- high-fructose corn syrup --- HFCS --- bioethanol --- structure --- l-fucose isomerase --- l-fucose --- l-fuculose --- extremophile --- halothermophilic bacteria --- Halothermothrix orenii --- lysozyme --- muramidase --- N-acetylmuramide glycanhydrolase --- human --- N-acetyl-β-d-glucosaminidase --- NAG --- crystal structure
Choose an application
Phenolic compounds are an extremely diverse class of ubiquitous secondary metabolites produced by a variety of organisms playing different biological roles. They have numerous types of demonstrated bioactivities, including antioxidant, antimicrobial, anti-inflammatory, antitumoral, immunomodulator, neuroprotective, cardioprotective, and antidiabetic activities. Marine organisms produce a vast collection of unique phenolic structures, some of them not found in terrestrial habitats. Progress in different aspects is rapidly advancing, and this Special Issue will provide updated information and recent studies on marine phenolics. Specially, this issue is focused on their chemical characterization, elucidation of their structures, evaluation of their biological properties and mechanisms of action, efficient extraction and purification technologies, development of value-added applications, as well as formulation of novel products.
Research & information: general --- Biology, life sciences --- Food & society --- ultrasound assisted extraction --- conventional extraction --- polyphenols --- phlorotannin --- macroalgae --- antioxidant capacity --- seaweeds --- antioxidant potential --- LC-ESI-QTOF-MS/MS --- HPLC-PDA --- seaweed polyphenols --- hypoglycemic effect --- starch digestion --- enzyme inhibition --- cochayuyo --- seaweed polyphenolics --- polyphenolics extractions --- phlorotannins --- bromophenols --- flavonoids --- phenolic terpenoids --- polyphenolics bioactivities --- marine phenolics --- emerging technologies --- extraction --- Ascophyllum --- seaweed --- health benefits --- isomers --- LC-MSn --- diversity --- phenolics --- simple phenolics --- seawater --- algae --- seagrass --- biological activity --- brown seaweeds --- microwave-assisted extraction --- response surface methodology --- antioxidant --- antiradical activity --- xanthine oxidase --- α-glucosidase --- ultrasound assisted extraction --- conventional extraction --- polyphenols --- phlorotannin --- macroalgae --- antioxidant capacity --- seaweeds --- antioxidant potential --- LC-ESI-QTOF-MS/MS --- HPLC-PDA --- seaweed polyphenols --- hypoglycemic effect --- starch digestion --- enzyme inhibition --- cochayuyo --- seaweed polyphenolics --- polyphenolics extractions --- phlorotannins --- bromophenols --- flavonoids --- phenolic terpenoids --- polyphenolics bioactivities --- marine phenolics --- emerging technologies --- extraction --- Ascophyllum --- seaweed --- health benefits --- isomers --- LC-MSn --- diversity --- phenolics --- simple phenolics --- seawater --- algae --- seagrass --- biological activity --- brown seaweeds --- microwave-assisted extraction --- response surface methodology --- antioxidant --- antiradical activity --- xanthine oxidase --- α-glucosidase
Choose an application
Biosensors are analytical devices used for the detection of a chemical substance, or analyte, which combines a biological component with a physicochemical detector. Detection and quantification are based on the measurement of the biological interactions. The biological element of a biosensor may consist of tissues, microorganisms, organelles, cell receptors, enzymes, antibodies and nucleic acids. These devices have been shown to have a wide range of applications in a vast array of fields of research, including environmental monitoring, food analysis, drug detection and health and clinical assessment, and even security and safety. The current Special Issue, “Biosensors: 10th Anniversary Feature Papers”, addresses the existing knowledge gaps and aids the advancement of biosensing applications, in the form of six peer-reviewed research and review papers, detailing the most recent and innovative developments of biosensors.
Technology: general issues --- History of engineering & technology --- Materials science --- antioxidants --- biosensor --- nanomaterials --- vasodilator activity --- breast cancer screening --- imaging biomarker --- deep sparse autoencoder --- dimensionality reduction --- deep-learning features --- Bioassays --- high performance thin layer chromatography --- endocrine disrupting compounds --- fluorescent proteins --- wastewater --- electromagnetic piezoelectric acoustic sensor --- quartz --- adsorption --- diagnostics --- extracellular vesicle --- dithiocarbamate fungicides --- chromatography --- Raman spectroscopy --- sensors --- enzyme inhibition --- voltammetry --- biosensors --- tobacco mosaic virus (TMV) --- capacitive field-effect sensor --- bi-enzyme biosensor --- enzyme-logic gate --- urease --- penicillinase
Choose an application
Enzyme-mediated catalysis offers special advantages over chemical methods. First of all, enzymes are considered an environmentally friendly tool as they help to avoid the requirements of toxic chemicals and high energy. In addition, more feasible processes can be accomplished through enzymatic reactions owing to the enzyme’s innate properties related to high substrate specificity and selectivity. For this reason, biotechnological production of a wide range of products, such as alternative fuels and value-added biochemicals, has been commercially applicable with the aid of enzymes, either in isolated form or in the whole-cell system. In particular, enzymatic transformation of low-value but cheap/abundant starting materials (i.g. biomass) into high-value materials can facilitate the circular and sustainable bioeconomy. This Special Issue on “Enzyme Catalysis: Advances, Techniques, and Outlooks” consists of six articles, which address diverse industrially relevant enzymes with applications in foods, detergent, cosmetics, medicine, etc. A robust methodology related to enzyme kinetics is also addressed.
Technology: general issues --- History of engineering & technology --- CYP102A1 --- atorvastatin --- 4-hydroxy atorvastatin --- hydrogen peroxide --- P450 peroxygenase --- NADPH --- enzyme inhibition --- integrated Michaelis–Menten equations --- reaction product inhibition --- two mutually exclusive inhibitors --- protease --- detergent --- surfactant --- cleaning --- glucose isomerase --- xylose isomerase --- high-fructose corn syrup --- HFCS --- bioethanol --- structure --- l-fucose isomerase --- l-fucose --- l-fuculose --- extremophile --- halothermophilic bacteria --- Halothermothrix orenii --- lysozyme --- muramidase --- N-acetylmuramide glycanhydrolase --- human --- N-acetyl-β-d-glucosaminidase --- NAG --- crystal structure --- n/a --- integrated Michaelis-Menten equations
Choose an application
Phenolic compounds are an extremely diverse class of ubiquitous secondary metabolites produced by a variety of organisms playing different biological roles. They have numerous types of demonstrated bioactivities, including antioxidant, antimicrobial, anti-inflammatory, antitumoral, immunomodulator, neuroprotective, cardioprotective, and antidiabetic activities. Marine organisms produce a vast collection of unique phenolic structures, some of them not found in terrestrial habitats. Progress in different aspects is rapidly advancing, and this Special Issue will provide updated information and recent studies on marine phenolics. Specially, this issue is focused on their chemical characterization, elucidation of their structures, evaluation of their biological properties and mechanisms of action, efficient extraction and purification technologies, development of value-added applications, as well as formulation of novel products.
ultrasound assisted extraction --- conventional extraction --- polyphenols --- phlorotannin --- macroalgae --- antioxidant capacity --- seaweeds --- antioxidant potential --- LC-ESI-QTOF-MS/MS --- HPLC-PDA --- seaweed polyphenols --- hypoglycemic effect --- starch digestion --- enzyme inhibition --- cochayuyo --- seaweed polyphenolics --- polyphenolics extractions --- phlorotannins --- bromophenols --- flavonoids --- phenolic terpenoids --- polyphenolics bioactivities --- marine phenolics --- emerging technologies --- extraction --- Ascophyllum --- seaweed --- health benefits --- isomers --- LC-MSn --- diversity --- phenolics --- simple phenolics --- seawater --- algae --- seagrass --- biological activity --- brown seaweeds --- microwave-assisted extraction --- response surface methodology --- antioxidant --- antiradical activity --- xanthine oxidase --- α-glucosidase
Choose an application
Marine habitats are promising sources to identify novel organisms and compounds. A total of 70% of the planet’s surface is covered by ocean, and little is known about the biosphere within these habitats. In the last few years, numerous novel bioactive compounds or secondary metabolites from marine environments have been described. This is, and will be, a promising source of candidate compounds in pharma research and chemical biology. In recent years, a number of novel techniques have been introduced to the field and it has become easier to actually (bio-)prospect compounds such as enzyme inhibitors. Those novel compounds then need to be characterized and evaluated in comparison to well-known representatives. This Special Issue focuses on the description of novel enzyme inhibitors of marine origin, including bioprospecting, omic approaches, and structural and mechanistic aspects.
sponge Monanchora pulchra --- pentacyclic guanidine alkaloids --- GH36 α-galactosidase --- GH109 α-N-acetylgalactosaminidase --- slow-binding irreversible inhibitor --- monanchomycalin B --- monanhocidin A --- normonanhocidin A --- Alzheimer′s disease --- BACE1 --- acetylcholinesterase --- in silico docking --- phlorotannins --- Ulva intestinalis --- ACE inhibitory peptide --- optimization --- purification --- structural identification --- molecular docking --- secondary metabolites --- Mycosphaerella sp. --- asperchalasine --- α-glucosidase --- kinase inhibitors --- drug development --- marine natural products --- inhibitor --- macroalgae --- marine fish --- protease --- Ulva ohnoi --- functional annotation --- structure–function relation --- natural products --- bioactives --- enzyme inhibition --- inactivation --- marine bacteria --- marine fungi --- marine sponges
Choose an application
Biosensors are analytical devices used for the detection of a chemical substance, or analyte, which combines a biological component with a physicochemical detector. Detection and quantification are based on the measurement of the biological interactions. The biological element of a biosensor may consist of tissues, microorganisms, organelles, cell receptors, enzymes, antibodies and nucleic acids. These devices have been shown to have a wide range of applications in a vast array of fields of research, including environmental monitoring, food analysis, drug detection and health and clinical assessment, and even security and safety. The current Special Issue, “Biosensors: 10th Anniversary Feature Papers”, addresses the existing knowledge gaps and aids the advancement of biosensing applications, in the form of six peer-reviewed research and review papers, detailing the most recent and innovative developments of biosensors.
antioxidants --- biosensor --- nanomaterials --- vasodilator activity --- breast cancer screening --- imaging biomarker --- deep sparse autoencoder --- dimensionality reduction --- deep-learning features --- Bioassays --- high performance thin layer chromatography --- endocrine disrupting compounds --- fluorescent proteins --- wastewater --- electromagnetic piezoelectric acoustic sensor --- quartz --- adsorption --- diagnostics --- extracellular vesicle --- dithiocarbamate fungicides --- chromatography --- Raman spectroscopy --- sensors --- enzyme inhibition --- voltammetry --- biosensors --- tobacco mosaic virus (TMV) --- capacitive field-effect sensor --- bi-enzyme biosensor --- enzyme-logic gate --- urease --- penicillinase
Listing 1 - 10 of 36 | << page >> |
Sort by
|