Listing 1 - 10 of 10 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Environmental Catalysis --- Energy Catalysis --- Photocatalysis --- Computational Catalysis --- Catalytic Mechanism --- environment remediation
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Environmental Catalysis --- Energy Catalysis --- Photocatalysis --- Computational Catalysis --- Catalytic Mechanism --- environment remediation
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Environmental Catalysis --- Energy Catalysis --- Photocatalysis --- Computational Catalysis --- Catalytic Mechanism --- environment remediation
Choose an application
Catalysts --- Catalysts. --- Catalytic agents --- Catalysis --- Chemical inhibitors --- Chemistry --- Chemical technology --- katalysatoren --- chemical processes --- photocatalysis --- electrocatalysis --- environmental catalysis --- biocatalysis --- catalytic materials
Choose an application
With the increasing global usage of water and the continuous addition of contaminants to water sources, new challenges have arisen that are associated with the abatement of organic pollutants, particularly those that are refractory to conventional water and wastewater treatment technologies. Advanced oxidation processes (AOPs) present a competitive alternative to promote the oxidation of organic contaminants by strong oxidative radicals generated from oxygen, ozone, wet peroxide, and UV radiation. The use of catalysts not only improves efficiency but may present remarkable cost advantages for practical applications of AOPs in the abatement of several pollutants. In this Special Issue of Catalysts, we invite authors to submit original research papers focused on the synthesis and characterization of novel heterogeneous catalysts and their uses in advanced oxidation processes for the removal of organic pollutants from aqueous solutions.
Technology: general issues --- History of engineering & technology --- CdS --- Bi2MoO6 microspheres --- antibiotic removal --- charge separation --- visible-light-driven --- carbon xerogel --- carbon nanotubes --- activated carbon --- adsorption --- catalytic wet peroxidation --- heterogeneous Fenton’s oxidation --- p-nitrophenol --- magnetic materials --- chemical vapour deposition --- photocatalytic ozonation --- organic pollutants --- advanced oxidation process --- wastewater treatment --- contaminants of emerging concern --- pharmaceuticals --- environmental catalysis --- biochar --- iron mineral --- heterogeneous catalysts --- antibiotic --- advanced oxidation processes --- water treatment --- Fenton reactions --- LCA --- environmental impact --- Fenton --- photocatalysis --- visible light --- SBA15 --- magnetite --- graphene --- tin oxide --- antimony doped tin oxide --- electrochemical oxidation --- atomic layer deposition --- TiO2-SiO2 --- immobilized photocatalyst --- methylene blue adsorption --- metal-free carbon catalysts --- N, S-co-doping --- catalytic wet air oxidation --- n/a --- heterogeneous Fenton's oxidation
Choose an application
With the increasing global usage of water and the continuous addition of contaminants to water sources, new challenges have arisen that are associated with the abatement of organic pollutants, particularly those that are refractory to conventional water and wastewater treatment technologies. Advanced oxidation processes (AOPs) present a competitive alternative to promote the oxidation of organic contaminants by strong oxidative radicals generated from oxygen, ozone, wet peroxide, and UV radiation. The use of catalysts not only improves efficiency but may present remarkable cost advantages for practical applications of AOPs in the abatement of several pollutants. In this Special Issue of Catalysts, we invite authors to submit original research papers focused on the synthesis and characterization of novel heterogeneous catalysts and their uses in advanced oxidation processes for the removal of organic pollutants from aqueous solutions.
CdS --- Bi2MoO6 microspheres --- antibiotic removal --- charge separation --- visible-light-driven --- carbon xerogel --- carbon nanotubes --- activated carbon --- adsorption --- catalytic wet peroxidation --- heterogeneous Fenton’s oxidation --- p-nitrophenol --- magnetic materials --- chemical vapour deposition --- photocatalytic ozonation --- organic pollutants --- advanced oxidation process --- wastewater treatment --- contaminants of emerging concern --- pharmaceuticals --- environmental catalysis --- biochar --- iron mineral --- heterogeneous catalysts --- antibiotic --- advanced oxidation processes --- water treatment --- Fenton reactions --- LCA --- environmental impact --- Fenton --- photocatalysis --- visible light --- SBA15 --- magnetite --- graphene --- tin oxide --- antimony doped tin oxide --- electrochemical oxidation --- atomic layer deposition --- TiO2-SiO2 --- immobilized photocatalyst --- methylene blue adsorption --- metal-free carbon catalysts --- N, S-co-doping --- catalytic wet air oxidation --- n/a --- heterogeneous Fenton's oxidation
Choose an application
With the increasing global usage of water and the continuous addition of contaminants to water sources, new challenges have arisen that are associated with the abatement of organic pollutants, particularly those that are refractory to conventional water and wastewater treatment technologies. Advanced oxidation processes (AOPs) present a competitive alternative to promote the oxidation of organic contaminants by strong oxidative radicals generated from oxygen, ozone, wet peroxide, and UV radiation. The use of catalysts not only improves efficiency but may present remarkable cost advantages for practical applications of AOPs in the abatement of several pollutants. In this Special Issue of Catalysts, we invite authors to submit original research papers focused on the synthesis and characterization of novel heterogeneous catalysts and their uses in advanced oxidation processes for the removal of organic pollutants from aqueous solutions.
Technology: general issues --- History of engineering & technology --- CdS --- Bi2MoO6 microspheres --- antibiotic removal --- charge separation --- visible-light-driven --- carbon xerogel --- carbon nanotubes --- activated carbon --- adsorption --- catalytic wet peroxidation --- heterogeneous Fenton's oxidation --- p-nitrophenol --- magnetic materials --- chemical vapour deposition --- photocatalytic ozonation --- organic pollutants --- advanced oxidation process --- wastewater treatment --- contaminants of emerging concern --- pharmaceuticals --- environmental catalysis --- biochar --- iron mineral --- heterogeneous catalysts --- antibiotic --- advanced oxidation processes --- water treatment --- Fenton reactions --- LCA --- environmental impact --- Fenton --- photocatalysis --- visible light --- SBA15 --- magnetite --- graphene --- tin oxide --- antimony doped tin oxide --- electrochemical oxidation --- atomic layer deposition --- TiO2-SiO2 --- immobilized photocatalyst --- methylene blue adsorption --- metal-free carbon catalysts --- N, S-co-doping --- catalytic wet air oxidation
Choose an application
Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.
Technology: general issues --- Environmental science, engineering & technology --- photocatalysis --- organic wastewater --- preparation method --- degradation --- characterizations --- hybridization --- exoelectrogen --- biocatalyst --- microenvironment --- porous electrode --- anaerobic --- recalcitrant compounds --- E. coli K12 --- methylene blue --- optimization --- Pareto chart --- perturbation graph --- Pt-based promoter --- CO oxidation --- environmental catalysis --- refinery compliance --- fluid catalytic cracking --- FCC --- sodium citrate --- sodium humate --- SO2 --- absorption --- BaQD --- carbamazepine --- ferric coordination complex --- photo-Fenton --- turbidity --- cyanide --- activated carbon --- titanium dioxide --- composites --- continuous flow --- adsorption --- catalytic ozonation --- Lewis and Brønsted acid sites --- natural zeolite --- reaction mechanism --- toluene --- three-phase modelling --- fixed-bed reactor --- wastewater treatment --- phenol --- granular activated carbon --- Ad/Ox --- volatile organic compounds --- core–shell structures --- spherical polymer templates --- Co3O4 --- Pd-based promoter --- NOx emission --- metal–organic frameworks --- heterogeneous catalysis --- carbon dioxide --- biomass --- hydrogenation --- oxidation --- Fisher-Tropsch
Choose an application
Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.
photocatalysis --- organic wastewater --- preparation method --- degradation --- characterizations --- hybridization --- exoelectrogen --- biocatalyst --- microenvironment --- porous electrode --- anaerobic --- recalcitrant compounds --- E. coli K12 --- methylene blue --- optimization --- Pareto chart --- perturbation graph --- Pt-based promoter --- CO oxidation --- environmental catalysis --- refinery compliance --- fluid catalytic cracking --- FCC --- sodium citrate --- sodium humate --- SO2 --- absorption --- BaQD --- carbamazepine --- ferric coordination complex --- photo-Fenton --- turbidity --- cyanide --- activated carbon --- titanium dioxide --- composites --- continuous flow --- adsorption --- catalytic ozonation --- Lewis and Brønsted acid sites --- natural zeolite --- reaction mechanism --- toluene --- three-phase modelling --- fixed-bed reactor --- wastewater treatment --- phenol --- granular activated carbon --- Ad/Ox --- volatile organic compounds --- core–shell structures --- spherical polymer templates --- Co3O4 --- Pd-based promoter --- NOx emission --- metal–organic frameworks --- heterogeneous catalysis --- carbon dioxide --- biomass --- hydrogenation --- oxidation --- Fisher-Tropsch
Choose an application
Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.
Technology: general issues --- Environmental science, engineering & technology --- photocatalysis --- organic wastewater --- preparation method --- degradation --- characterizations --- hybridization --- exoelectrogen --- biocatalyst --- microenvironment --- porous electrode --- anaerobic --- recalcitrant compounds --- E. coli K12 --- methylene blue --- optimization --- Pareto chart --- perturbation graph --- Pt-based promoter --- CO oxidation --- environmental catalysis --- refinery compliance --- fluid catalytic cracking --- FCC --- sodium citrate --- sodium humate --- SO2 --- absorption --- BaQD --- carbamazepine --- ferric coordination complex --- photo-Fenton --- turbidity --- cyanide --- activated carbon --- titanium dioxide --- composites --- continuous flow --- adsorption --- catalytic ozonation --- Lewis and Brønsted acid sites --- natural zeolite --- reaction mechanism --- toluene --- three-phase modelling --- fixed-bed reactor --- wastewater treatment --- phenol --- granular activated carbon --- Ad/Ox --- volatile organic compounds --- core–shell structures --- spherical polymer templates --- Co3O4 --- Pd-based promoter --- NOx emission --- metal–organic frameworks --- heterogeneous catalysis --- carbon dioxide --- biomass --- hydrogenation --- oxidation --- Fisher-Tropsch
Listing 1 - 10 of 10 |
Sort by
|